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Preface

As the frequency and costs of disasters continue to rise, and with the final
years of the Sendai Framework for Disaster Risk Reduction 2015-2030
approaching, it is critical that we support developing countries in making
the most of every available resource to accelerate progress. In this regard,
advancements in technology offer a clear opportunity to help countries
leapfrog progress.

In recent years, rapid progress in areas such as Earth observation,
geospatial analysis and artificial intelligence has significantly enhanced
our ability to collect, process, and interpret data efficiently. These
innovations are greatly improving our understanding of current and
projected climate and disaster risks, and have the potential to transform
how countries design and implement disaster risk reduction measures, not to mention guide investments in
the public and private sectors so that they are risk-informed.

However, adoption of these technologies has been uneven, with many developing countries lagging behind
due to factors such as affordability and applicability. This disparity is evident globally but is particularly
pronounced in the Americas and the Caribbean.

This special report on Technology for Disaster Risk Reduction (Tech4DRR) aims to bridge the gap between
technological progress and its application by highlighting practical use cases. It explores how emerging
tools can facilitate real-time monitoring, improve risk modelling, and support data-driven decision-making—
all with the overarching goal of reversing the rising trend of disaster impacts.

Acknowledging that technology alone cannot address the complexities of disaster risk, the report calls for a
balanced approach—one that combines technological innovation with capacity-building, knowledge-sharing,
inclusive policymaking, and a demand-driven approach to developing and applying technology.

| commend the UNDRR Regional Scientific and Technical Advisory Group for Americas and the Caribbean,
ARISE USA, and the United States’ National Aeronautics and Space Administration (NASA) for collaborating
on this innovative report, which not only supports the implementation of the Sendai Framework but also the
Global Digital Compact.

By harnessing the power of technology, we can build a future where resilience is not just a possibility but a
reality. This report is a solid contribution towards that future.

\ .
Kamal Kishore

Special Representative of the United Nations Secretary-General for Disaster Risk Reduction,
and Head of the United Nations Office for Disaster Risk Reduction (UNDRR)
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Introduction

The components for assessing and understanding
disaster risk, namely hazard, exposure and
vulnerability, have been conceptually defined

since 1980 by the United Nations Disaster Relief
Organisation (UNDRO). However, the information
required to accurately model and represent each of
these components has historically been scarce.

The lack of information has been one of the
greatest obstacles to achieving significant
progress in generating high-quality risk information,
which in turn can support decision-making
processes in key areas such as designing and
implementing multi-hazard early warning systems
(MHEWS), boosting disaster risk reduction (DRR)
financing, implementing the resilient infrastructure
principles and avoiding the reconstruction of
vulnerability after a disaster through resilient
recovery and building back better.

The increasing intensity and/or frequency

of certain climate-related disasters, such as
droughts and floods, provide strong motivation

to emphasize the transformative potential of
technology (particularly digital technology) in
supporting DRR efforts. We are living in the
“smart age”, witnessing rapid advances in
artificial intelligence (Al), quantum computing and
blockchain, which are transforming everything,
everywhere, simultaneously. DRR is no exception
to these advances, and there is growing potential
for generating information that can support various
decision-making processes.

For instance, the development of new technologies
in recent years has significantly increased the
availability of tools for monitoring key variables
that help understand the processes of hazard
formation and/or occurrence. They can also help
in identifying and characterizing populations and

elements exposed to one or more hazards (e.g.
using the Internet of Things to develop proxies),
quantifying different dimensions of vulnerability
(e.g. through real-time monitoring and diagnostics
of critical infrastructure) and using high-resolution
satellite imagery to rapidly estimate disaster
damages. These advances and the availability of
information facilitated by new technologies can
also expedite the validation and calibration of
various components of any risk model.

While the number of available tools and
technologies is a good indicator of progress,

it is also important to acknowledge significant
advances in their robustness. However, a major
setback remains, particularly in Latin America
and the Caribbean, related to the adoption, use
and adaptation of these technologies in resource-
limited environments (e.g. the cost of licences

or equipment) or within fragile and conflict-
affected settings (e.g. limitations in access to, and
maintenance of, monitoring equipment).

A shift in the approach to technology development
is therefore required. Currently, most countries in
the region must navigate the existing market to
find the tools that best fit their needs, with little,

if any, interaction with technology developers.

The adoption and development costs of many
technologies have the potential to increase and
decrease, respectively, if a transition is made
towards demand-driven development processes.

Despite the availability of more risk data and risk
models for almost all countries in the Americas
and the Caribbean, their use in decision-making
processes (particularly those related to sustainable
development) remains limited. This indicates that
high-quality risk models and information alone

are not sufficient. With this in mind, this special



report aims to contribute to the debate on the
development and use of cutting-edge technologies
for DRR while maintaining a balance between
technological progress and the democratization of
access to, and use of, science. A clear example of
this is found in the field of Al and machine learning
(ML), where it is necessary not only to identify

and renounce biases inherent in the data used for
algorithm training but also to consider how up to
date the data are. Computers trained on historical
data reflecting past patterns may become
outdated or inappropriate for current contexts,
since Al and ML technologies are always based

on past knowledge, which can hinder the ability to
understand future trends. A key example of this
are the adverse effects of climate change, which
are often not adequately captured in historical
data, thereby limiting the robustness of projections
required for 10, 20 or even 50 years into the future.

It is well known that early warning systems (EWS)
are among the most cost-effective tools for

saving lives. Precisely for this reason, in 2022, the
United Nations Secretary-General launched the
Early Warnings for All (EW4AIl) initiative, led by
UNDRR and the World Meteorological Organization
(WMO). In this field, technology has not only made
highly relevant recent contributions but also holds
additional potential for improvement, particularly in
impact-based forecasting. Enhancing monitoring
capabilities and identifying new variables that

can be monitored, forecasted and more strongly
correlated with expected impacts will be crucial.
Such forecasts can also be expanded to adopt

a more systemic approach by, for example,
incorporating considerations related to food
security.

The application of technology in DRR also holds
great potential for refining, validating and analysing
historical disaster event databases (e.g. trend
analysis and changes in disaster occurrence
patterns). This can be achieved through near-
real-time content analysis of social media and
online publications, such as identifying fake

news and improving public alerts, or by making
high-resolution estimations of the location of

Introduction | USE OF TECHNOLOGY FOR DISASTER RISK REDUCTION

populations at risk. Significant progress has been
made in these areas in recent years, particularly
in industrialized countries, from which data are
primarily sourced. This highlights that the main
challenge at present lies not necessarily in the
development of new technologies but rather in
the difficulties faced by many governments in
developing nations, both at national and local
levels, in accessing them, as well as in evaluating
their robustness in specific contexts due to biases
in their development.

Technology has also a critical role to play in
assisting the proper communication of messages
to the general public before, during and in the
aftermath of disasters. In times where social media
channels are widely used by most of the population
to obtain near-real-time information, there is a risk
of not only false alerts but also fake news. ML
techniques have the potential to rapidly counteract
these by identifying them and sending offset
messages.

When considering technology to assist DRR efforts,
we should not only focus on cutting-edge and high-
end approaches. The role of “low-tech” solutions

in supporting local implementation of DRR has
been widely overlooked. Therefore, the adoption

of inclusive approaches for their development,
including but not limited to Indigenous and
traditional knowledge, is much needed.

Regarding Al, while a significant number of people
are sceptical about its contributions, an even

larger number are using it in increasingly routine
activities. It is therefore necessary to continue
scaling up Al applications to achieve not only
short-term positive impacts but also long-term
sustainability. It is also crucial to remember that
every model is a simplification of a complex
phenomenon, and none can be better than the data
from which it was developed. If investment in these
two areas (i.e. development and adoption) is not
balanced, there is a high risk that, while models and
algorithms may generate information for decision
makers, it may be difficult to interpret and might

O
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lead to over-reliance on results at the expense of
existing capabilities.

Technology for DRR not only has the
potential to improve understanding

of the subject rapidly and efficiently
among both decision makers and the
general public, but also to support the
use of results in disaster risk financing
activities.

Technology for DRR not only has the potential

to improve understanding of the subject rapidly
and efficiently among both decision makers and
the general public, but also to support the use of
results in disaster risk financing activities. Perhaps
the most tangible example is the development

of parametric risk transfer instruments, where
technology has proven essential in generating the
information required for instrument design. This
has, in many cases, enabled insurance coverage for
risks that previously had prohibitively high annual
premiums, as well as the necessary monitoring
mechanisms for rapid compensation (between 2
and 14 days).

The key message of this special report is that
technology, regardless of how advanced and
robust it may be, cannot solve DRR challenges

on its own. For instance, it is evident that the
existing challenges go beyond merely increasing
investment in technology development and
adoption; they also encompass capacity-building
efforts and pedagogical shifts that should extend
even to primary education. Technology itself can
support capacity-building processes, for example,
through the use of virtual learning tools.

As we approach the final stretch for implementing
the Sendai Framework for Disaster Risk Reduction
2015-2030 (Sendai Framework), it is highly
relevant to reflect on the benefits of adopting
technologies to support DRR efforts. This reflection
should extend beyond technology adoption to
include efforts aimed at democratizing high-quality
risk information, empowering communities and
significantly improving disaster risk management

and reduction capacities. In this regard,

technology has the potential to explicitly and
directly support the four priorities of the Sendai
Framework: understanding disaster risk (which
evidently requires a thorough risk assessment),
strengthening disaster risk governance, increasing
DRR financing (including investment in technology
development, adoption and training) and enhancing
preparedness for emergency response and resilient
recovery.

This special report consists of a series of
independent chapters organized as follows:
chapter 1 introduces the role of technology in
DRR, emphasizing the need to explicitly consider
the context and discussing the close relationship
between technological innovation and risk
assessment methods. Chapter 2 presents the
role of Al and ML in DRR, describing their benefits
and limitations through a series of case studies
from Latin America and the Caribbean. Chapter 3
discusses the need to adopt an inclusive approach
when developing and training technologies in
order to increase their adoption and ensure they
are responsive to the local needs. Chapter 4
highlights the benefits of adopting technologies
in activities related to MHEWS, by for instance
indicating that the introduction and adoption of
relatively simple technologies based on Indigenous
and local knowledge can yield high life-saving
benefits. Finally, chapter 5 explores how certain
communication systems, such as social media,
have contributed to reducing disaster risk. It also
examines the challenges regarding the accuracy
and validity of information during and in the
aftermath of a disaster that Al and ML can help
to solve. Some chapters include a series of case
studies that highlight the power of digital tools.

In most cases, benefits have been identified at
the local level (where DRR must be implemented),
but it is also essential to recognize that fostering
cooperation, information exchange and the sharing
of best practices can maximize the benefits of
these tools.



The chapters have been structured independently,
allowing readers to focus on those of particular
interest. However, we have carefully curated the
content and terminology to ensure consistency

in the definitions and applications presented. We
invite readers to engage with this special report
from a critical perspective, so that they not only
focus on the regional advancements in technology
for DRR but also consider the challenges that lie
ahead in improving aspects related to accessibility,
applicability and adaptability.

Introduction |
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1. Introduction

The Sendai Framework for Disaster Risk Reduction
2015-2030 (UNDRR, 2015) underscores the
indispensable role of technology in mitigating
disaster risks and enhancing community
resilience. The Sendai Framework calls for
leveraging advanced technologies to improve
multi-hazard early warning systems, disaster
response mechanisms and comprehensive risk
assessments. These technological advancements
are critical to achieving the framework’s goals,
which include reducing disaster impacts on
livelihoods, health and well-being, as well as
damage to critical infrastructure and services.

The development, adoption and implementation

of these technologies are more likely to succeed
when they are tailored to local contexts and
informed by those directly impacted by their use.
This involves considering multiple factors including
existing infrastructure, local capacities for
technological adoption, the specific technological
capabilities of the area, community knowledge and
involvement, and an enabling policy environment.
These considerations are crucial to evaluating

the suitability and potential impact of various
technologies in different regions and communities.
For instance, a technology that proves effective in
an urban area with a tech-enabled infrastructure
may not be suitable for a rural community that
relies on Indigenous knowledge or low-tech
systems and solutions.

Despite the rapid proliferation of technologies
and innovations to support disaster risk reduction
(DRR), there is a lack of standardized criteria and
tools for developing and assessing their suitability
across diverse contexts and timescales. This
often results in shortfalls in tech solutions and
the misapplication of technologies, leading to
suboptimal outcomes and, at times, exacerbating
the vulnerabilities they aim to mitigate. For
example, the use of digital technologies in lower-
income regions during the COVID-19 pandemic

illustrates this issue. Governments and local
bodies quickly introduced digital tools, such as
smartphone apps, to track the spread of the virus
(Gangadharan, 2021). However, their effectiveness
was limited by the “digital divide”, as many people
lacked reliable Internet access or the digital literacy
to utilize these technologies effectively. This divide
was evident in education, where online learning
platforms could not be uniformly accessed across
socioeconomic groups, deepening educational
inequalities (Unni, 2023).

This chapter will: (1) highlight the role that
technology and innovation play in DRR and in
achieving the objectives of the Sendai Framework;
(2) identify and discuss the key criteria and
conditions that need to be considered when
evaluating the suitability of different technologies;
and (3) provide illustrative regional and global
examples of DRR technologies across contexts,
emphasizing the necessity of robust and adaptable
technology assessment criteria and tools. Through
this exploration, the chapter aims to contribute to a
more nuanced understanding of how to effectively
integrate technology into DRR strategies, ensuring
that technological interventions and solutions

are human-centric, contextually appropriate and
impactful.

2. Role of technology
and innovations in
DRR

The Latin American and the Caribbean (LAC)
region is vulnerable to multiple types of disasters,
including hurricanes, earthquakes and floods.

Over the past two decades, these events have had
severe and widespread impact, affecting more than
190 million people in LAC. The region’s vulnerability
is constantly tested by compounding risks such

as climate change, dense urban populations,
economic instability and limited resources. The
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2010 Haiti earthquake resulted in over 222,500
deaths, making it one of the deadliest disasters

in human history (OCHA and UNDRR, 2023).
Hurricanes Eta and lota hit Central America less
than two weeks apart in 2020 at the height of the
COVID-19 pandemic, affecting nearly 9 million
people and causing widespread destruction (OCHA
and UNDRR, 2023).

Disasters in the LAC region are characterized by
their complexity and multiplicity, with cascading
effects that draw on existing vulnerabilities
(UNDRR, 2023b). Climate change has increased
the frequency and intensity of severe weather
events, leading to recurring and more-intense
hurricanes and floods. The region’s high population
density, particularly in urban areas, and its reliance
on climate-sensitive sectors such as tourism

and agriculture further heighten its vulnerability

to natural hazards. Technology, defined as the
application of scientific knowledge for practical
purposes, has emerged as an important tool

for enhancing DRR efforts. Technologies are

often associated with physical devices such as
computers, machinery and equipment. However,
in the context of DRR, technology takes on a
broader meaning that encompasses more than just
hardware; rather, it includes “ways of doing things”
that can include both hard and soft approaches
and aspects related to the environment (Srinivas,
2023).

Various technologies help build the knowledge
and understanding needed to manage all risk
components (i.e. exposure, vulnerability and
hazard). They provide tools to carry out robust risk
assessments, improve forecasting capabilities
and facilitate efficient early warning systems. For
example, Artificial Intelligence (Al) combined with
satellite imagery and Geographic Information
Systems (GIS) technology can automate the near-
real-time updating of disaster risk maps in order to
provide more-accurate data support for emergency
evacuations, as well as equipment and resource
allocation. These technologies can also optimize
evacuation route planning, ensuring people in
hazardous areas can evacuate quickly.

Many countries in LAC have made great
advancements in using technology to identify

the susceptibility of geographic locations and
infrastructure to damage from severe hazards.
Al-powered drone technology can capture post-
disaster damage quickly and accurately. For
example, the use of drones in both Sint Maarten
and Dominica was critical in collecting information
after Hurricanes Irma and Maria, respectively,

as they were used to assess structural damage

to homes and road collapses. These data then
translated into more-efficient deployment of
resources and aid (Runde, Sandin and Kohan,
2021). Another example is the use of technology
in humanitarian assistance after the 2016 Ecuador
earthquake, where drones were used to quickly
measure the extent of the catastrophe, with more
than 7,000 buildings destroyed (Prado, 2016).
Such data help authorities allocate relief resources
more efficiently and develop more-comprehensive
recovery plans for future disasters.

Existing technologies that employ satellite imagery
were used to manually tag and categorize rooftops
in India based on the materials used for their
construction. The roofing materials act as a proxy
for the house’s socioeconomic condition, indicating
the level of its inhabitants’ socioeconomic
vulnerability to a typhoon. These data were
translated into easily shared and understood early
warning information, delivered through readily
available means to alert people - particularly the
most vulnerable — to secure their belongings and
shops and evacuate ahead of a typhoon. During
this system'’s use in 2020-2021, 1,100 families
were evacuated on time using the advisories
generated by the model (Ajmal, 2021).

These and many other DRR technologies are
transferable to other countries and can easily be
adapted through stakeholder input and guidance
to best meet the cultural, social, economic

and governance needs of the community and
region. Geospatial technologies, often combined
with sensor, crowdsourced data analysis, can
significantly enhance post-disaster recovery
efficiency. Multispectral imaging, which captures

O
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data from several distinct segments (bands) of
the light spectrum, is widely used for assessing
vegetation health, land-cover changes and
structural damage (Izumi et al., 2019; Space
Voyage Ventures Team, 2024). Hyperspectral
imaging, on the other hand, gathers data from
hundreds of very fine, closely spaced segments
of the light spectrum, allowing for more precise
detection of different materials or conditions (for
example, distinguishing between different roof
types or flood-damaged areas) (Schwandner,
2018). These technologies provide accurate
damage assessments, offering specific data to
support insurance claims and accelerate recovery.
Their use is essential for reducing risks from
cascading events, enhancing preparedness and
adaptation, building back better and building
resilient communities.

3. DRR through an
exposure, vulnerability
and hazard lens

Understanding DRR through a lens that considers
all components of the risk equation, namely
exposure, vulnerability and hazard, is foundational
to effective DRR (Figure 1). Technologies can
improve our understanding of the complexities
and meaning behind each of these factors at the
individual, local and national levels. The UNDRR
Data Strategy and Roadmap 2023-2027 (UNDRR,
2023a) underscores the importance and value

of data and technology in strengthening and
implementing DRR efforts.

“Exposure” refers to the situation of people,
infrastructure, housing, production capacities

and other tangible human assets located in
hazard-prone areas (UNDRR, 2017). Technological
advancements, such as earth observation imagery
and GIS, have significantly improved our ability to
map and monitor these components. For example,
space-based earth observation imagery provides
high-resolution data that can map the built and
natural environments, including buildings and
infrastructure. These data can be integrated into
population distribution estimates to provide an
overview of exposure in different regions. In LAC,
GIS has been used to map areas exposed to natural
hazards, such as earthquake-prone zones in Haiti,
in order to guide reconstruction efforts and urban
planning that reduces exposure (Fontes de Meira
and Bello, 2020).
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Figure 1. Risk framework illustrating the interconnection between exposure, vulnerability and hazard for disaster

risk reduction

Limits to adaptation

E.g., physical, ecological,
technological, economic, political,
institutional, psychological, and/or
sociocultural

Actions to reduce hazards

Examples include:

+ Ecosystem-based measures to
reduce coastal flooding

+ Mangroves to alleviate coastal
storm energy

+ Water reservoirs to buffer
low-flows and water scarcity

+ Reduce greenhouse gas
emissions

Hazard

Source: Adapted from the Intergovernmental Panel
Climate Change and Disaster Risk Management

Vulnerability refers to the conditions determined
by physical, social, economic and environmental
factors or processes which increase the
susceptibility of an individual, a community,
assets or systems to the impacts of hazards
(UNDRR, 2017). Technology aids in assessing and
addressing these vulnerabilities through accurate
data collection and analysis. For instance, big
data analytics using Al integrates remote sensing
and multispectral data to provide near-real-time
disaster forecasts, allowing authorities to identify
high-risk areas and take pre-emptive actions more
accurately. This technology is particularly crucial
for reducing the exposure of populations to storm
risks and minimizing human and economic losses.
In LAC, big data analytics has been used to assess
the impact of previous hurricanes and predict
which areas might be most affected by future

Vulnerability

Actions to reduce vulnerability
Examples include:

- Social protection

« Livelihood diversification

+ Insurance solutions

+ Hazard-proof housing and infrastructure

Actions to reduce exposure
Examples include:

- Coastal retreat and resettlement
+ Risk-sensitive land-use planning
+ Early warning systems and
evacuations

Exposure

on Climate Change (IPCC, 2019) Special Report on

storms (ITU, 2020). Advances in remote sensing
and satellite imagery provide real-time data on
weather conditions, enabling accurate forecasting
and early warnings for events such as hurricanes
and floods, thereby allowing timely evacuations
and preparations that reduce vulnerability (NASA,
2024; Google Research, 2024).

Any process, phenomenon or human activity

that may cause loss of life, injury or other health
impacts, property damage, social and economic
disruption, or environmental degradation is

a hazard (UNDRR). Disaster risk pertains to

the probability of occurrence of a potentially
damaging physical event and the potential impact
it could have on exposed population and assets.
Technological solutions and innovations have
greatly enhanced our capacity to understand
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and mitigate these risks. The development

of probabilistic risk assessments, which use
both historical and hypothetical event data to
estimate potential losses, has become more
robust as computational modelling techniques
have advanced. Such modelling enables decision
makers to predict potential losses and develop

specific response strategies for different scenarios.

For example, in Trinidad and Tobago, smart flood
management systems use sensors, Internet of
Things (IoT) devices and advanced software to
monitor water levels, predict flooding and manage
water flow through dams and levees to help control
hazards (Trinidad and Tobago Meteorological
Service, n.d.). The Mayor’s Office of Manizales
(Colombia), with the support of the National
University of Colombia — Manizales headquarters,
designed a catastrophic risk assessment for
earthquakes and landslides in the city. Based on
this study, the city developed and implemented a
voluntary collective insurance policy to cover the
poorest strata of the population (Salgado-Gélvez et
al., 2017; Bernal et al., 2017).

Technology is useful in understanding and
managing hazards, exposure, vulnerability and
disaster risk. It enables advanced tools for data
collection, analysis and communication that help
make informed decisions. Technology not only
improves the robustness of early warnings and risk
assessments, but also facilitates effective planning
and response strategies, ultimately reducing

the overall impact of disasters on communities.
However, it is important to acknowledge that the
collection and use of data, while beneficial, can
also introduce new risks. In the wrong hands,
sensitive information may be exploited to cause
harm or to exacerbate vulnerabilities. Therefore,
ethical management and protection of data are
crucial to ensuring that the benefits of technology
in DRR are not overshadowed by potential threats.

3.1 Relationship between technology
innovation and risk assessment

The relationship between technology and risk
assessment, particularly probabilistic risk
assessment (PRA), is integral and multifaceted.
PRA provides a robust mathematical framework for
estimating the consequences of future disasters
by considering the random nature of hazards,
vulnerabilities and exposure and by rationally
incorporating that uncertainty into the outcomes.
This framework offers a set of metrics that fully
represent the loss occurrence process, allowing
risk management strategies, background trends
and modelling under deep uncertainty to be
integrated into a solid mathematical framework,
making it a versatile decision-making tool (Bernal
etal., 2024).

The tremendous computing power and speed

of modern technology enable the simulation of
multiple risk scenarios and the adjustment of
strategic models in near-real-time under different
conditions. This technology allows decision makers
to quickly assess the effectiveness of solutions
and provides stronger data support for resource
allocation and response strategies. This capability
not only enhances the analysis of potential disaster
outcomes but also allows for the modelling

and testing of various solutions and pathways,
providing a more robust foundation for decision-
making. Technology and innovation play a crucial
role in DRR by enhancing preparedness, response,
recovery, adaptation and resilience. Technology
makes PRA significantly more effective, accurate,
efficient, comprehensive and reliable and supports
better risk management, decision-making and
funding through:

1. Data collection and analysis: Advanced
sensors, data acquisition systems and big data
analytics enable the gathering and processing
of large data sets, which are essential for
identifying and understanding potential risks
(i.e. their impacts and occurrence frequency).
These technologies can be applied to real-time
monitoring and early warning, providing
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communities and authorities with accurate risk
assessments and response plans. Examples:
satellite technology, sensors and loT, drones
and robotics.

Modelling and simulation: Utilizing high-
performance computing (HPC) and
sophisticated software tools allows for
detailed simulations and modelling, critical

for accurate PRA. These technologies assist
authorities in planning more-accurate response
measures and ensuring efficient resource
allocation. Examples: climate models, seismic
activity simulations.

Automation and efficiency: Automation tools
and Al enhance the efficiency and accuracy

of PRA processes by not only processing

input data, such as exposure, vulnerability

and hazard parameters, but also directly
contributing to risk assessment and decision-
making. Al-driven models automate complex
risk calculations, optimize iterative simulations
and reduce human error, thereby improving
the reliability of PRA assessments. For
example, Al-driven risk analysis tools can
dynamically update models based on real-time
data, thereby improving predictive accuracy
and supporting adaptive risk assessment.
Similarly, machine learning models improve
scenario analysis by continuously identifying
patterns and correlations within large data
sets, enabling scenario forecasting and near
real-time risk updates. Examples: Al-driven risk
analysis tools for real-time scenario modelling,
machine learning models for dynamic hazard
forecasting, and automated decision support
systems for optimizing resource allocation in
disaster response.

Visualization and communication: Visualization
tools and interactive dashboards effectively
present complex risk data, making it accessible
and understandable to stakeholders and
facilitating better decision-making. Examples:
GIS, mobile networks, social media.

5. Real-time monitoring and predictive analytics:
loT devices and predictive analytics enable
real-time monitoring and forecasting, which are
integral to dynamic risk assessment updates,
timely alerts and proactive management.

Such real-time prediction systems can detect
extreme weather changes or sudden disasters,
such as flash floods or volcanic eruptions,
giving emergency teams more time to act.
Examples: sensors and loT, early warning
systems, predictive analysis, real-time data
dashboards.

6. Interdisciplinary integration: Integrated software
platforms and collaborative tools promote
cooperation across various domains (e.g.
engineering, finance, healthcare), which is
essential for seamlessly integrating diverse
expertise into PRA. Examples: smart cities,
collaborative platforms.

Furthermore, effective public policies in DRR and
sustainable development — ranging from financial
protection and knowledge-based public investment
to resilient infrastructure, territorial planning and
impact-based early warning — can all benefit from
estimates and appropriate risk layering obtained
through PRA (Bernal et al., 2024). One example
of a tool for visualizing risk layering is the Loss
Exceedance Curve (LEC), which demonstrates the
probability of exceeding different loss thresholds
over time. Bernal et al. (2017) provide examples
of such a curve, highlighting how different risk
layers, ranging from frequent but low-severity
losses to rare but catastrophic events, can inform
risk retention, transfer and mitigation strategies.
Technology can further assist governments and
policymakers with performing detailed risk layering
for different regions and analysing long-term
climate trends based on historical and real-

time data. These technologies not only support
the planning of resilient infrastructure but also
reduce the economic losses caused by disasters
through early warning systems while promoting
the implementation of sustainable development
policies.
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The United Nations TechNovation Cycle is

an exemplary model for conceptualizing and
guiding technological innovation projects in DRR
(Dorn, 2021). This structured process spans

from initial ideation to full implementation,
including feasibility studies, testing, pilot projects,

deployment, assessment, refinement, scaling and
mainstreaming (Figure 2). It emphasizes learning
from both successes and failures, integrating use
cases, prototyping and developing minimum viable
products.

Figure 2. The TechNovation Cycle: A structured approach to sustainable technology innovation
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The TechNovation Cycle emphasizes combining
users’ experiences, needs and local knowledge with
technological awareness to develop the needed
innovation(s). Communities that take this human-
centric and holistic approach build capacity and
understanding, making them more likely to adopt,
maintain and expand the technologies that best
suit their needs. They can also avoid technologies
that, while attractively funded, may be ill-suited to
their needs and implementation abilities.

3.2 Reducing vulnerability through
technological interventions

Actions to reduce vulnerability through technology
can be categorized into several areas, including
early warning systems, data collection and
analysis, communication, infrastructure

resilience and community engagement. Early
warning systems provide timely and accurate
information about impending hazards, enabling
communities and authorities to take preventive
measures and evacuate and/or take shelter as
needed. Automated weather stations and satellite
technology provide real-time data on weather
conditions, enabling accurate forecasting and early
warnings for events such as hurricanes and floods
(World Bank Group, 2019). Several cities in the
LAC region use satellite-based systems to monitor
and predict hurricane paths, allowing for timely
evacuations and preparations (UNDRR, 2023b).
The Community Early Warning System (SIATA,
2022), a joint initiative between the city of Medellin
(Colombia) and EAFIT University, uses cutting-
edge technology, drones, hydrometeorological
monitoring equipment and radars, among other
tools, to maintain an alert system that activates

a chain of calls through community leaders
spread more than 17 km along the watershed

and throughout marginal neighbourhoods (SIATA,
2022).

Accurate data collection and analysis are
fundamental to understanding risks and making
informed decisions. GIS technology is used to
create detailed maps that highlight areas prone

to natural hazards. These maps are essential

for urban planning, ensuring that physical
infrastructure is not built in high-risk areas. For
example, GIS has been used in Haiti to map
earthquake-prone zones and guide reconstruction
efforts following the 2010 earthquake (Fontes

de Meira and Bello, 2020). Additionally, big data
analytics help in predicting disaster trends and
assessing vulnerabilities. By analysing large data
sets, authorities can identify patterns and potential
risk factors. Big data analytics can be used to
assess the impact of previous hurricanes in the
LAC region and predict which areas might be
most affected by future storms (GFDRR, 2024).
This helps authorities in precise urban and rural
planning and enables pre-emptive evacuation
strategies, reducing risks from poorly planned
infrastructure development.

Technological advancements also support land-use
planning and DRR by integrating PRA into decision-
making. In Manizales, Colombia, PRA helps city
planners and policymakers understand potential
disaster impacts and guide development. Using
Loss Exceedance Curves (LEC) and Average Annual
Loss (AAL) estimations, authorities can identify
which areas are too risky for construction and
where mitigation measures are needed (Bernal et
al., 2017). The city applies seismic “microzonation”
(the process of dividing a region into smaller zones
based on local geological and seismic conditions
to assess earthquake risk more precisely) and
hazard mapping to plan safer urban expansion and
prioritize infrastructure investments that reduce
disaster risk. These tools enhance the accuracy of
risk assessments, support resilient infrastructure
investments and reduce vulnerabilities by ensuring
that urban growth aligns with scientific risk
evaluations.

Effective communication technologies ensure
that critical information reaches the right people
at the right time, thereby reducing the risk of
harm. Mobile apps and social media platforms
are increasingly used for disaster communication
and can provide real-time updates, emergency
alerts and information on safe evacuation routes.

O,
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During Hurricane Maria, social media played

a key role in disseminating information and
coordinating relief efforts in Puerto Rico (Pérez-
Figueroa, Ulibarri and Hopfer, 2025 ). Similarly, Al
can analyse multispectral data from drones and
satellites in real-time and disseminate disaster
warnings through multilingual digital platforms to
residents from diverse backgrounds. This allows
even vulnerable communities to receive real-time
and timely alerts and take actions to reduce losses.
In Mexico, SASMEX disseminates early warnings
for coastal earthquakes up to one minute before
the arrival of strong motion in Mexico City, via
electronic messaging using dedicated receivers,
public loudspeakers, multi-hazard radios and
participating TV and radio stations. This is useful
in schools and low-rise buildings, which may have
short-column issues, so that people are aware they
should evacuate rapidly at the sound of the alert
(Sudrez, 2022).

Technological innovations in construction and
infrastructure design can help reduce vulnerability
by providing guidance on constructing buildings
and infrastructure that are more resilient to
disasters. Advances in building materials and
engineering practices, as well as building-code
enforcement, have led to the development of
earthquake-resistant buildings. In regions such as
LAC, adopting these techniques helps minimize
damage during seismic events. For example,
retrofitting schools and hospitals with earthquake-
resistant designs has been a focus in the
Dominican Republic (UNDRR, 2007).

Engaging communities in the right technological
tools enables them to participate in DRR efforts.
For example, technology that enables community
members to monitor hazards and environmental
changes increases local engagement and
awareness, thus saving lives. For instance,
community-based flood monitoring systems, where
residents use mobile phones to report water levels,
help authorities respond more quickly to potential
flooding (UNFCCC, n.d.).

3.3 Reducing exposure through
technological solutions

Reducing exposure to hazards through
technological solutions involves enhancing
monitoring and prediction capabilities,

optimizing land-use and urban planning,
improving infrastructure design and improving
communication and coordination. These actions
are important in mitigating the impact of disasters
and protecting vulnerable communities.

Advanced monitoring and prediction technologies
play a pivotal role in anticipating hazardous events,
which allows communities and authorities to

take protective measures. For example, remote
sensing and satellite imagery are essential tools
for monitoring environmental changes (stressors)
and detecting early signs of potential hazards
such as volcanic activity, deforestation or rising
sea levels. In LAC, satellite data have been
instrumental in tracking hurricane development and
progress, enabling preparations, evacuations and
adaptations that significantly reduce exposure to
these powerful storms.

The World Economic Forum points out that it is
crucial to focus on climate adaptation at scale, as
well as climate mitigation. We must strengthen our
ability to adapt to current and expected climate
events, using actionable climate insights to inform
decisions. The use of Al for its climate modelling
capabilities is fundamental to this, yet we see
significantly more Al innovation focused on climate
mitigation such as leveraging Al to measure

and reduce emissions, than on adaptation. This
innovation gap needs to be addressed, and the
development of responsible Al must be accelerated
to acquire actionable climate insights (Van den
Bergh, 2022).

@
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Technology can help reduce exposure to hazards
through strategic initiatives such as coastal
retreat, risk-sensitive land-use planning, nature-
based solutions and early warning systems.
Coastal retreat involves relocating communities
and infrastructure away from high-risk coastal
areas to safer locations. This approach, combined
with technology-driven urban planning tools,

helps design cities and communities in ways that
minimize exposure to hazards. Risk-sensitive
land-use planning integrates hazard information
into urban planning and development decisions,
such that physical infrastructure is not built in high-
risk areas. In Saint Lucia, for instance, GIS mapping
has guided urban planning efforts to avoid
construction in flood-prone areas, thereby reducing
the population’s exposure to flood risks (CDEMA,
2015; One Saint Lucia, 2022).

Innovative infrastructure design technologies

help reduce exposure by physically separating
structures from hazards, thus preventing direct
impact. In flood-prone regions, for example,
technology enables the design and construction
of elevated buildings and infrastructure. In coastal
areas of the LAC region, elevated construction
techniques raise buildings and infrastructure above
expected flood levels, keeping them out of harm'’s
way. In coastal areas of the LAC region, homes,
hospitals and emergency shelters are built on
stilts, raised platforms or elevated foundations

to avoid floodwaters rather than merely resisting
their impact (Sustainable Buildings Initiative,

n.d.; World Construction Today, 2024). Similarly,

in earthquake-prone areas, land-use planning

and zoning regulations help relocate critical
infrastructure away from high-risk zones, reducing
direct exposure to hazards.

Additionally, the use of modular and repurposable
building materials allows for rapid deployment and
reconstruction after disasters, helping communities
quickly restore essential infrastructure. These
materials — often derived from locally available
waste or recycled products such as recycled
plastics, compressed earth blocks, bamboo and
modular concrete panels — enable faster recovery

by lowering the costs and reducing dependence
on traditional supply chains. For instance, recycled
plastic bricks have been used in post-disaster
housing projects in Colombia (Valencia, 2011) and
Indonesia (Morton, 2021), while bamboo-reinforced
concrete provides a lightweight yet durable option
for the rapid restoration of community shelters, as
seen in post-earthquake rebuilding efforts in Nepal
(Friedrich, 2016) and Ecuador (Van Drunen et al.,
2015). This approach not only reduces exposure
by enabling rapid reconstruction in safer areas but
also promotes sustainable building practices by
utilizing easy-to-produce, environmentally friendly
resources.

Effective communication technologies are
essential for the timely dissemination of
information and coordination during disasters to
reduce the exposure of populations to hazards.
Early warning systems in Trinidad and Tobago, for
example, send alerts to residents’ mobile phones
about approaching storms, allowing them to take
action to reduce their exposure to impending
hazards (WMO, n.d.b). These interventions highlight
the role of technology in mitigating the impact of
disasters by decreasing exposure to hazards. On

a global scale, UNESCOQ's Global Tsunami Early
Warning and Mitigation Programme, coordinated
by IOC-UNESCQ, is a critical system for protecting
lives from tsunamis. The programme’s role has
evolved to include more than just issuing warnings;
it also assists Member States in assessing risk,
implementing early warning systems, educating
communities and developing tracking and
detection technologies (UNESCO, 2024).

Technological innovations in construction and
materials have significantly contributed to the
development of disaster-resilient infrastructure,
particularly in coastal areas prone to flooding and
sea level rise. For instance, advanced engineering
techniques such as seismic isolation systems are
increasingly being used to enhance the earthquake
resilience of critical structures. A key example

is the Adana City Hospital in Tirkiye, which
remained fully operational during the February
2023 earthquakes due to its base isolation system,
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which reduced seismic impact by 75 per cent
while surrounding buildings suffered extensive
damage (Osman Ozbulut, 2023). Similarly, flexible
and shock-absorbing foundation systems, such

as base isolators and seismic dampers, help
buildings withstand earthquakes by minimizing
ground motion transfer. Despite the proven
effectiveness of these technologies in past
earthquakes, they have only been implemented

in a fraction of the locations where they could
provide significant benefits in Tiirkiye (Osman
Ozbulut, 2023). These technologies have been
widely implemented in earthquake-prone regions
globally to minimize structural damage and
ensure the safety of occupants. For example, after
experiencing significant damage during the 2004
earthquake, several hospitals in Colombia have
been reconstructed with base isolation systems to
ensure functionality during seismic events (Eriksen,
Mohammed and Coria, 2018). Additionally, flood-
resistant materials such as waterproof concrete
and corrosion-resistant metals are increasingly
used in construction to make critical infrastructure
such as hospitals and emergency shelters more
resilient (Ulm and Manay, n.d.; Taha et al., 2021).

Technology for environmental management helps
maintain natural buffers against hazards and
reduce exposure. Drones equipped with seed
dispersal technology, for example, are used to
reforest areas affected by deforestation, thereby
restoring natural barriers that reduce exposure

to landslides and floods. In Haiti, drone-based
reforestation projects have helped rebuild
mangrove forests that protect coastal areas from
storm surges, illustrating the role of environmental
technologies in DRR (NCBA CLUSA, n.d.).

3.4 Reducing hazards through
technological innovation

Technology plays a significant role in reducing
disaster risks by not only addressing vulnerabilities
and exposure but also by actively mitigating the
hazards themselves when this is possible. Actions
to reduce hazards through technology include

modifying the environment, controlling potential
triggers and utilizing innovative solutions to
minimize hazard impacts. For instance, ecosystem-
based measures leverage natural systems to
mitigate hazards (UNDRR, 2020). Mangroves and
coral reefs act as natural barriers against storm
surges and coastal erosion. Coastal restoration
projects use advanced techniques to rebuild these
natural buffers, significantly reducing the impact of
hurricanes and coastal erosion.

Technological interventions can inform
environmental modifications to mitigate natural
hazards and reduce their potential impact. Al-
supported technology can analyse multispectral
data captured by drones and satellites to identify
high-risk areas for wildfires or other natural
hazards. For example, coastal restoration projects
use geoengineering to rebuild natural barriers

such as mangroves and coral reefs. In Belize,
these projects have successfully helped rebuild
mangrove forests, significantly reducing the
impact of hurricanes and coastal erosion (The Pew
Charitable Trusts, 2022). In wildfire-prone areas,
controlled burns and advanced forest management
techniques are employed to reduce the amount of
combustible material. Satellite imagery and drones
monitor forest conditions and plan for strategic
controlled burns (NASA, Landsat Science, 2021;
NASA, Earth Observatory, 2023). In Dominica, such
practices have been adopted to manage wildfire
risks, significantly reducing the likelihood of large-
scale disasters. Using technologies to understand
and identify which products and approaches

are best suited to a community should not be
overlooked.

Innovative water management technologies can
control hazards related to water, such as floods
and droughts. Smart flood management systems
use sensors, loT devices, and advanced software to
monitor water levels, predict flooding and manage
water flow through dams and levees. In many
regions, these systems have been deployed to
monitor rivers and reservoirs, allowing for proactive
measures to prevent flooding and manage water
resources efficiently (National Drought Mitigation
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Center, n.d.). Similarly, technologies for containing
and managing hazardous materials can prevent
environmental hazards and reduce disaster risks.
Advanced wastewater treatment technologies,
for example, prevent the release of hazardous
chemicals and pollutants into the environment.

In industrial regions of LAC, modern wastewater
treatment plants use membrane bioreactors

and other advanced filtration methods to reduce
the risk of waterborne hazards (United States
Environmental Protection Agency, 2007). Brazil
has developed a territorial intelligence model, a
near-real-time fire-spread prediction system for
the Brazilian Cerrado, the biome most affected

by wildfires in South America. The system
automatically uploads hot pixel and satellite

data to generate maps of fuel loads, vegetation
moisture and probability of burning, which are used
to simulate fire spread. The model's results are
available on an interactive web platform to help
prevent and promptly combat wildfires (Oliveira et
al., 2023).

Infrastructure improvements also play a crucial
role in mitigating hazards. Advanced engineering
techniques and construction materials are used to
retrofit buildings and infrastructure to withstand
earthquakes. Seismic sensors, along with building
technologies designed to absorb and dissipate
seismic energy, can significantly reduce the risk
posed by earthquakes. In the Dominican Republic,
seismic retrofitting of schools and hospitals has
been implemented to minimize damage during
earthquakes, reducing the hazard’s impact (Rojas-
Mercedes et al., 2020).

Climate engineering technologies aim to reduce the
hazards associated with climate change by directly
intervening in the climate system. For example,
cloud seeding technologies use aircraft or ground-
based generators to disperse substances into the
atmosphere that encourage cloud formation and
precipitation, reducing the risk of drought. Some
Caribbean islands have explored cloud seeding to
address water scarcity during prolonged dry spells,
thereby mitigating drought-related hazards (WMO,
n.d.a).

In summary, technology reduces disaster risks by
actively mitigating hazards through environmental
modification, hazard control, infrastructure
improvements, water management systems,
containment of hazardous materials, and climate
engineering. Additionally, the use of repurposable
materials, sourced from local waste and integrated
into flexible supply chains, further increases the
resilience of communities and ecosystems. These
materials enable quick recovery and repair of
critical infrastructure, reducing dependence on
external resources. By combining these sustainable
practices with technological interventions, we can
diminish the severity of impacts of natural hazards
while enhancing the adaptive capacity of both
communities and ecosystems against potential
disasters.

The LAC region’s high vulnerability to disasters

is compounded by complex and interconnected
risks. Whether in Belize, Dominica, Puerto Rico,
Saint Croix or Honduras, each area differs in
environmental, social, cultural, economic and
developmental aspects, meaning no two countries
will have the same vulnerability to hazards and/

or exposure conditions. As more technologies

are developed to be agnostic, flexible and
customizable, they will become increasingly
accessible and interoperable. This is particularly
beneficial for smaller communities that share
borders, as they will be able to partner to share the
costs of acquiring these technologies, share data
and develop the capacities needed to implement,
operate and maintain them.
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4. Criteria for
evaluating the
suitability of
technologies and
iInnovations in DRR:
Essential elements
for successful
adoption and
implementation

As outlined in the previous sections, technologies
can be evaluated for their ability to sense, monitor,
capture, analyse, manage and communicate vast
amounts of valuable information, facts and data.
However, we must avoid falling into a technology-
driven bias, where technology becomes an end in
itself. It is critical to first define the problem and
its causes with those most at risk such that the
identified technology will contribute to solving

it. The first step for a community evaluating
technology for DRR is to begin with a clear
understanding of the entire community’s exposure,
vulnerability and hazard characteristics, presented
in this chapter in terms of an impact chain

(Figure 3).

Successfully pairing any technology (or set of
technologies) to address these challenges hinges
on stakeholders’ understanding of and connection
with the technology — or, in most cases, a suite

of interconnected technologies — and its value

to them. Achieving comprehensive community
acceptance, engagement, trust, use and promotion
of technology will ensure outcomes are aligned
with community-defined goals.

Like any solution, the success of these
technologies will be measured by the number of
lives saved, the effectiveness of warnings and
responses, the speed and ease of recovery and
adaptation, the protection of livelihoods, the
enhancement of resilience, the knowledge gained
and the level of losses and damages that must
be absorbed by affected individuals, communities
and governments or transferred to external entities
such as insurers, aid organizations or risk-sharing
mechanisms.
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Figure 3. Impact chain framework illustrating how climate-related hazards, exposure and vulnerability contribute

to disaster risk
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4.7 Accepting and adopting
technologies for DRR

Standard technology acceptance models (TAMs)
highlight four interconnected factors critical for the
acceptance and use of new technologies. These
are: perceived usefulness, perceived ease of use,
behavioural norms and behavioural intention. In
the context of DRR, these factors are shaped by
several key influences. Community awareness

and understanding play a crucial role in improving
knowledge of local hazards and risks over time.
The relevance and capability of technology are
also vital factors, as they determine how well

a technology can address and mitigate these
identified risks. Finally, individual and community
experiences and perceptions related to these
risks influence behavioural norms and intentions,
affecting the overall acceptance and effective
utilization of DRR technologies.

@
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4.2 Evaluating technological and
infrastructural readiness

Successful adoption of DRR technologies not only
requires assessing social and behavioural aspects
but also evaluating technological readiness and
infrastructural support. This comprehensive
approach includes assessing technological
maturity, which involves understanding the

level of DRR awareness in local contexts to

ensure technologies are adopted effectively.
Additionally, infrastructural compatibility must

be considered, taking into account whether the
existing infrastructure can adequately support the
technology in question, paying specific attention

to energy requirements, interoperability and
maintenance capabilities. Together, these elements
contribute to a holistic assessment framework that
is critical for the successful implementation of DRR
technologies.

4.3 Scalability of DRR technologies

Scalability means ensuring that DRR technologies
can be adapted from local to regional levels
without diminishing their effectiveness. An
evaluation covers both the adjustability of these
technologies to function optimally at various scales
and their cost-effectiveness, assessing whether the
investments required to scale up are justified by
the benefits they provide. This balance is crucial for
the broader implementation and sustainability of
technology solutions in DRR.

4.4 Enabling policy environment

An enabling policy environment facilitates

the acceptance and implementation of DRR
technologies by ensuring that knowledge is
accessible and leads to actionable steps. The
transdisciplinary nature of risk science and
knowledge, bridging sectors and stakeholders,
may be central to finding solutions (ISC, IRDR and
UNDRR, 2021). Supportive policies can facilitate
innovation by providing funding, resources and

regulatory support and establishing standards
to guide the development and deployment of
technologies.

4.5 Reliability and trust

The reliability of technology is crucial for its
acceptance in any application, including DRR.
Reliability encompasses both the consistency and
dependability of technology — it must perform
reliably under a variety of conditions in order

to build trust. Additionally, the accuracy of the
information provided by technology is vital; it
must deliver precise data that stakeholders can
use to make informed decisions. Together, these
elements of reliability ensure that technology is
not only trusted but also effective in practical
scenarios.

4.6 Visualization, communication and
(near) real-time analytics

Effective visualization and communication

tools are crucial for simplifying complex risk
information to make it comprehensible and
actionable for stakeholders. These tools help
break down intricate risk assessments to facilitate
informed decision-making. Complementing these,
the integration of IoT devices and predictive
analytics into disaster risk management systems
enables real-time monitoring and forecasting.
This proactive approach not only provides timely
updates and alerts but also enhances the overall
responsiveness to potential hazards, ensuring that
risk management is both dynamic and adaptive to
changing conditions. Together, these technologies
form a robust framework for managing disaster
risks more effectively.

4.7 Interdisciplinary integration

DRR requires inputs from various domains,
integrating expertise from engineering, finance,
healthcare and more to address the multifaceted
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challenges of disasters. Technology should
facilitate the integration of diverse disciplines
through enhanced communication and data-
sharing tools such as GIS, which synthesize
diverse data to improve decision-making and
implementation of DRR strategies.

4.8 Including Indigenous knowledge

Recognizing Indigenous knowledge as a

system within DRR enriches traditional and

modern approaches to disaster mitigation and
preparedness. Initially acknowledged in the Fourth
Assessment Report of the Intergovernmental Panel
on Climate Change (IPCC) and later accepted by
the IPCC as an alternate approach towards disaster
mitigation and community-based preparedness
(Panda, Chatterjee and Panda, 2023), Indigenous
knowledge provides time-tested, accessible “soft
tech” approaches to managing disaster risk. It can
also inform and be combined with crowdsourcing
and other technologies to strengthen, accelerate
and scale innovative solutions for DRR.

4.9 Governance and leadership
support

Effective governance and leadership are crucial
for fostering a supportive environment for

DRR technologies. TAM behavioural norms

and behavioural intention relative to DRR tech

are shaped by experience, and social, cultural
and legal expectations. Trust, consistency and
fairness are fundamental to these processes

- sometimes framed by principles and morals,
and other times by laws and regulations. When
these elements are missing, unclear or vague,
gaps can emerge in capacity-building, consensus-
reaching and engagement with, and utilization of,
technologies. In situations where governments
or other authorities lack the political will to fulfil
their commitments to DRR and the Sustainable
Development Goals (SDGs), or where corruption
is present, stakeholders’ behavioural intentions
will weaken. Challenges such as lack of political
will and corruption can undermine community

engagement and trust, reducing incentives to adopt
technological improvements.

Understanding disaster risk in all its dimensions

- vulnerability, capacity, exposure of people and
assets, hazard characteristics and the environment
— must be the basis for more-effective disaster

risk management in the future. Paradoxically,

while our knowledge of the physical aspects of
hazards is increasing, much of that knowledge is
not being used effectively or at a scale to ensure
robust decision-making beyond emergency
responses. Countries still lack multi-hazard risk
data on differential vulnerabilities at the required
resolutions, and cross-domain interoperability
issues are hindering proper risk assessment, model
characterization, classification and description (e.g.
prospective loss estimate models) (ISC, 2023).

5. Systems thinking in
technology for DR

The most comprehensive criteria for assessing
and adopting technologies for DRR follow a
systems approach. This method is essential for
understanding the increasingly interconnected
and complex socioecological systems within
which risks manifest (see the Global Assessment
Report on Disaster Risk Reduction, UNDRR, 2019).
Traditional risk frameworks often overlook the
temporal and spatial interactions of different
hazards or the combination of extreme events with
slow-onset events or prolonged crises (Keys et al.,
2019). Anthropogenic changes and globalization
further exacerbate these risks. Concepts such

as compound risk, systemic risk, cascading risk,
NATECH (natural hazards triggering technological
disasters) risk and Anthropocene risk have
emerged as alternative frameworks that attempt
to capture the dynamic nature of risks in modern
systems (ISC, IRDR and UNDRR, 2021).

The adoption of a systems approach in evaluating
DRR technologies acknowledges the intricacies
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of modern risks, including compounding, systemic,
cascading and NATECH risks. These risks

illustrate the interconnected nature of natural and
technological hazards, exacerbated by human
activities and global interconnectedness. By
embracing systems thinking, stakeholders can

better anticipate and mitigate the multifaceted
impacts of disasters, ensuring more-robust response
mechanisms.

A systems approach to DRR inherently promotes

the engagement of a broad array of stakeholders
across disciplinary, sectoral and geographical lines.
This engagement is critical for fostering mutual
understanding and collaboration, which are essential
for the nuanced application of technology in diverse
contexts. For example, combining insights from
Indigenous and local communities with scientific
and technological advancements enhances the
applicability and effectiveness of DRR strategies,

promoting culturally appropriate and widely accepted
solutions.

Systems thinking also addresses operational
challenges, such as the accessibility of satellite data
or the integration of early warning systems. The
value chain framework, for example, provides an
approach to characterize the warning chain in terms
of its processes, inputs and outputs, relationships,
contributions and operational contexts. The value
chain approach allows us to understand the
non-linear relationships that occur in a warning
chain where different stakeholders intervene and
contribute until reaching a final product. Figure 4,
from Golding et al., 2019, illustrates the value chain
for high-impact weather warnings by showing the
capabilities and outcomes (“green mountains”) and
the information exchanges (“bridges”) that link the
capabilities and their associated communities.

Figure 4. Value chain framework in systems thinking for technology evaluation and adoption in disaster risk

reduction
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Source: Adapted from Golding et al., 2019

By considering the entire value chain of DRR -
from data collection and processing to actionable
insights and interventions — technology adoption
can be optimized for greater impact. Collaborative
platforms enabled by technology foster cross-
boundary partnerships that enhance resource
sharing, knowledge exchange and collective action,

& health modeling
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Social, economic

crucial for overcoming logistical and operational
barriers in DRR.

The private sector plays a crucial role in DRR,
utilizing technologies such as GIS, PRA and
advanced infrastructure management tools to
safeguard businesses’ people, assets, operations
and reputations. These technologies enable
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businesses to assess and mitigate risks, ensuring
continuity and resilience in the face of potential
disasters. The private sector’s significant presence
in most communities means that it often has access
to valuable data and insights that can be shared
with public sector efforts, enhancing overall disaster
preparedness, response and adaptation strategies.
By leveraging these technologies, organizations not
only protect their interests but also contribute to the
broader safety and resilience of the communities in
which they operate.

Adopting a systems approach in the implementation
of DRR technologies is more than a strategic choice;
it is a necessity in the face of evolving global risks.
This approach not only enhances the efficacy and
reach of technological solutions but also ensures
that these solutions are sustainable, inclusive and
adaptable to the changing dynamics of risk and
human societies. The concept of resilience in DRR
is significantly amplified through systems thinking,
while encouraging the exploration of synergies
between various frameworks and agendas, such as
the SDGs and climate adaptation and mitigation.

By aligning DRR technologies with broader
developmental objectives, systems thinking helps
craft solutions that are not only effective in disaster
risk reduction but also beneficial in promoting long-
term sustainability and resilience.

USE OF TECHNOLOGY FOR DISASTER RISK REDUCTION
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Executive summary

Artificial intelligence (Al) and machine learning
(ML) are transforming disaster risk reduction (DRR)
by providing advanced tools for risk analysis, event
prediction and emergency response. The advent

of generative Al (GAI) and agentic Al (AAIl) may
continue this progression.’ This document explores
the application of Al technologies in the DRR field,
detailing their definitions, benefits, use cases and
associated challenges.

Al involves a range of techniques that simulate
human intelligence, while ML, a subfield of Al,
enables computers to learn from data. GAIl extends
to enabling computers to generate entirely new
content patterned on the data that have been
used to train them, while AAl generates actions
and processes. These technologies are proving
invaluable in various DRR applications, such as
predicting seasonal or extreme weather events,
developing hazard maps, supporting real-time
disaster monitoring and detection, optimizing
resource allocation during emergencies, and
assisting post-event triage.

However, while Al technologies offer great promise
for DRR, their deployment is challenging. Issues
such as system failures, cyberattacks, equity of
access, and biases in Al models require careful
attention. GAl and AAI may “hallucinate”, inventing
seemingly authoritative content or taking actions
that have no basis in fact at all. Overcoming these
challenges demands caution, robust infrastructure,
rigorous testing and continuous monitoring.

Furthermore, ethical concerns — such as ensuring
fairness and avoiding the perpetuation of existing
biases — are crucial for the responsible use of
these technologies and require a strong policy and
social framework within which to deploy them.
Equally important is the need for Al technologies to

be developed and implemented in a demand-driven
manner, ensuring they address the specific needs
of communities, decision makers and emergency
responders. Al solutions designed without
considering local contexts and user requirements
risk becoming ineffective or misaligned with
real-world challenges. By engaging stakeholders
early on in the development process and fostering
interdisciplinary collaboration, Al-driven DRR
innovations can be more impactful, adaptable and
widely adopted.

The document also highlights the importance of
explainable Al (XAl) in enhancing transparency and
trust in Al systems. By making Al decision-making
processes understandable, XAl can help mitigate
the risks associated with “black-box” models,
where the rationale behind Al predictions and
generated content is opaque.

In conclusion, Al technologies bring substantial
benefits to DRR, facilitating more-accurate
predictions, more-efficient resource allocation and
improved emergency response. However, if they
are to be successfully implemented, technical,
ethical, social and operational challenges must be
addressed. By doing so, organizations can leverage
the power of Al and ML to build more-resilient
communities and mitigate the impact of disasters.

1 In this document, for convenience, Al, ML and GAI/AAI are referred to collectively as “Al technologies”.
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1. Introduction

Disaster risk reduction (DRR) is a critical field that
utilizes technological advancements to mitigate
and manage the impacts of disasters triggered
by natural and human causes. Among these
advancements, artificial intelligence (Al), machine
learning (ML) and, most recently, generative Al
(GAIl) have emerged as transformative tools.

As catalysts, these technologies offer unparalleled
capabilities in understanding, predicting and
responding to disaster risks. Al technologies
enable the analysis of vast amounts of data,
uncovering patterns and insights beyond human
capacity. Below are some aspects through which
we can understand how implementing these two
technological tools has impacted DRR, and how
they have become integral catalysts.

e Data detection and searches: Al plays a
critical role in identifying and characterizing
risk hazards, exposure and vulnerabilities.
By analysing data to detect patterns and
anomalies beyond human perception, Al
enhances our ability to anticipate events and
mitigate potential negative impacts.

e Real-time data processing: The ability of Al to
extract meaning from large volumes of data in
near-real-time is indispensable for maintaining
an up-to-date understanding of conditions on
the ground. This enables rapid and effective
response in critical situations, thus improving
monitoring, forecasts and emergency
management.

Simulations and risk modelling: Al simulations
provide “what-if” scenarios that help assess
potential damage, losses and impacts to
population and the natural and physical

built environment and then plan prevention
measures. Modelling risks and their factors
(hazards and vulnerabilities of exposed
elements and/or systems) and generating
graphical representations, powered by

ML algorithms, facilitates the graphical
representation of risks. This improves
communications and helps contextualize the
critical areas identified.

Forecasting and preparedness: Al and ML are
critical for forecasting extreme events. By
analysing historical and current data, these
models can provide timely warnings, which

are vital for emergency and/or disaster
preparedness and response. GAl could be used
to develop realistic training use cases to assist
in preparedness.

Resource optimization and automated response:
Efficient resource allocation during risk and
disaster management is made possible by

Al optimization algorithms. In addition, Al-
based automated response systems, such

as chatbots, can guide people in situations

of imminent risk, saving human and non-
human lives, providing life support, ensuring
business and/or service continuity, supporting
environmental services and minimizing
damages.
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Figure 1. Examples of applications of Al in DRR
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In the following sections, we will delve deeper

into several key areas. We will start by defining
essential terms such as artificial intelligence

and machine learning, establishing a clear
understanding of their roles and capabilities. Next,
we will discuss the numerous benefits of these
technologies in the context of DRR, including
examples of their successful applications. We

will also address the issues and uncertainties
associated with Al and ML, such as biases
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that may replicate existing inequities or favour
suboptimal actions, and ethical concerns; we
propose solutions to mitigate these challenges.
Finally, we will explore the concept of explainable
Al and its importance in ensuring transparency and
trust in Al systems. Through this comprehensive
examination, we aim to provide a thorough
understanding of how Al and ML can revolutionize
DRR and how the challenges it presents can be
avoided.
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1.1 Important definitions
There is no single definition of Al, but in general:

Artificial intelligence is a set of
computerized analytic techniques
that enable computer systems to
simulate human intelligence and
problem-solving capabilities,? but with
far larger quantities than any human
could handle, and improve their own
performance (accuracy, granularity,
range etc.) over time.

Al systems should be designed to align with
human values and objectives, ensuring they act in
ways that are beneficial to humanity and enhance
human well-being. This means that beyond merely
replicating human intelligence, Al must operate in
ways that are compatible with ethical principles
and societal goals.

Al is not a new tool, but its growing use has been
enabled primarily by the availability of data from
millions of networked sensors (the “Internet of
Things” [IoT]®) and searchable accumulations
and archives and by access to computing power
in the enormous quantities required to train and
operate Al algorithms to generate more meaningful
conclusions from those data. Secondarily, there
have been developments that increase the range
and sophistication of those algorithms, and so
broaden the field of potential applications. These
trends apply to DRR as much as they do in any
other field, resulting in many potentially beneficial
use cases.

Machine learning (ML) is a
computational method that is a
subfield of artificial intelligence.

It uses data and algorithms to
gradually improve the performance
of a computer system at predicting
outcomes by correcting in the light
of observed errors without being
explicitly programmed.

In essence, ML trains machines to learn from data
and improve with experience rather than being
explicitly programmed for specific tasks. ML
algorithms can classify data or make predictions
based on analysis of previous data. Deep learning
(DL) utilizes various neural network architectures
to develop models that can automatically

learn and represent complex patterns in data,
enabling advanced predictive capabilities and
decision-making.

Generative Al (GAI) generates original
content from the data with which it
has been fed. Content may include
text, images, speech, computer code
or even music.

GAl is the most powerful extension to date of

ML and DL (together with other Al technologies
such as natural language processing [NLP]). GAI
tools often derive from large language models
(LLMs): ChatGPT, Llama and Bard are well-known
examples. However, Al vendors are increasingly
also looking at applying GAl technology in the form
of smaller models trained on data from within
specific fields, such as water management or
various medical disciplines.*

2 See, for example, https://www.ibm.com/topics/artificial-intelligence.

3 TheInternet of Things is generally held to consist of networked specific-to-purpose sensors, whether satellite-based
observational capabilities or terrestrial sensors (the latter include cameras and meters); sensing devices mounted
to other equipment; and personal devices such as smart phones with sensing capacities. One estimate suggests
that there were 17.08 billion 10T devices in use in 2024, rising to 29.4 billion by 2030.

4 See, for example, https://unite.un.org/sites/unite.un.org/files/generative_ai_primer.pdf.

@
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Agentic Al (AAl) builds on the same
family of Al techniques as described
for GAI. Rather than generating
content, however, AAl automates
complex workflows to generate
independent actions or decisions in
pursuit of specific goals. Like GAl, it
learns and improves over time.

The major uses of AAl look likely to be in business
operations (supply chain optimization, as one
example) and healthcare. It is so far not known

to have been used in the DRR field, but there are
potential applications in emergency management,
infrastructure operations and other complex
decision environments.

1.2 Working with Al technologies

The journey of an ML model (and, by extension,
other Al technologies as well) involves three key
phases: model development, model deployment
and operational management (Figure 2). Each
phase ensures the model’s effectiveness,
scalability and adaptability to real-world

Figure 2. Key phases of a machine learning model
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ongoing effectiveness.

However, the adoption of Al technologies is

often challenged by top-down approaches, where
centralized decision-making slows implementation
and creates a disconnect from real-world needs.

A more proactive, demand-driven perspective

is necessary to ensure that Al solutions are
developed in close collaboration with end users
and stakeholders. By shifting towards a client-
centric model, Al adoption can become more
effective, addressing the specific challenges faced
by organizations and communities while fostering
greater trust and engagement.

@/Operational

N

6 Current data

&
Digitize ‘ m éﬁ
v

Deployed
ML-model

Outputs




Artificial intelligence, machine learning and disaster risk reduction 1 USE OF TECHNOLOGY FOR DISASTER RISK REDUCTION

1.3 Categories of ML (summarized
from Bishop, 2006)

Understanding the different categories of ML is
crucial, particularly in fields like DRR. ML, with its
various types, such as supervised, unsupervised,
semi-supervised and reinforcement learning,
plays a crucial role in analysing data and making
predictions, making it a cornerstone of Al.

Supervised learning uses a labelled data set to train
the model. Each training example has an input
and a desired output, and the model learns to map
inputs to outputs, enabling it to make predictions
on new data. In the context of DRR, supervised
learning can be used to predict the impacts of
disasters. Historical data on past disasters,
including weather conditions, geographical
location, exposure and vulnerability development,
and response times, can be used to train a model
to predict the potential severity of future disasters.

On the other hand, unsupervised learning deals with
unlabelled data. The model infers natural structure
within the data to discover hidden patterns or
structures. For DRR, unsupervised learning can be
employed; for example, to cluster regions based

on their vulnerability to different types of disasters,
aiding in resource allocation and risk mitigation
efforts.

Semi-supervised learning uses a combination of
labelled and unlabelled data to improve learning
accuracy, even with limited labelled data available.
This approach can enhance prediction models

in DRR scenarios. Finally, reinforcement learning
involves an agent learning to make decisions by
interacting with its environment and receiving
feedback through rewards or penalties. This can

be beneficial for optimizing response strategies in
DRR.

In real-life problems, there are many kinds of ML:

a summary is set out in appendix 1,° together with
examples of the data sets and uses that might
apply in DRR. It may be inferred from appendix 1
that, beginning with relatively basic ML methods,
the various methods — many of which are based on
different forms of regression analysis — represent a
progression of steps (some incremental, some very
large) from one another.

Understanding and leveraging these types of ML
can aid in addressing complex challenges in DRR,
enabling robust predictions, uncovering hidden
patterns, enhancing models with limited labelled
data and optimizing decision-making through
interaction with dynamic environments.

Examples of ML algorithms currently in use:

e Neural networks are algorithms inspired by the
human brain. They interpret data and recognize
patterns through interconnected nodes or
layers.

e Deep learning (DL) is a subset of machine
learning (ML) that uses neural networks
with many layers (deep neural networks). It
excels at processing large amounts of data
to identify complex patterns. In fact, NNs are
a crucial part of DL, including various types
tailored to different data and learning tasks.
For example, feed-forward neural networks,
the simplest form of artificial neural networks,
are commonly used in basic classification
tasks. When they have multiple hidden layers,

5 Appendix 1 focuses on actual Al methods that might be encountered in the DRR field, rather than on the more
“meta” classifications that readers may have encountered, such as generative vs predictive, or reactive/limited
memory/theory of mind/self-aware, or narrow/general or strong/super Al, and others. These classifications are
used within the Al industry rather than by users and some categories such as theory of mind and self-aware, or
strong and super Al, do not yet exist and so are not useful for DRR today.


https://www.techtarget.com/searchenterpriseai/tip/4-main-types-of-AI-explained
https://www.techtarget.com/searchenterpriseai/tip/4-main-types-of-AI-explained
https://www.ibm.com/blog/understanding-the-different-types-of-artificial-intelligence/
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they are considered DL networks, according to
Goodfellow, Bengio and Courville (2016).

Convolutional neural networks (CNNs) are
specialized in processing grid-like data, such
as images. They are exceptionally effective

at recognizing patterns within images and

find extensive application in object detection,
facial recognition and medical image analysis,
making them a crucial component of DL
(LeCun, Bengio and Hinton, 2015). Beyond
these applications, CNNs play a significant role
in developing exposure models for the built
environment (i.e. representations of physical
assets, such as buildings and infrastructure,
that quantify their characteristics, spatial
distribution and vulnerability to hazards).
CNNSs can automatically classify buildings,
infrastructure and land-use patterns by
analysing satellite imagery, aerial photographs
and street-level views. This capability enhances
risk assessment frameworks by providing
accurate and scalable exposure data, essential
for DRR, urban planning and resilience
modelling.

Recurrent neural networks (RNNs) excel in
handling sequential data, such as time series
or language modelling. When structured with
multiple layers, RNNs can also be utilized in
deep-learning tasks, as stated by Goodfellow,
Bengio and Courville (2016).

Long Short-Term Memory Networks (LSTMs),

a type of RNN, are proficient in learning long-
term dependencies. They are often employed in
language modelling and time-series prediction
tasks and can be applied to both grid-like data,
like video frames, and other sequential data
(Goodfellow, Bengio and Courville, 2016).

Other important concepts:

Natural language processing (NLP): NLP
focuses on the interaction between computers
and human languages. It enables machines

to understand, interpret and generate human

| Artificial intelligence, machine learning and disaster risk reduction

language. Some examples of applications
include chatbots, which provide customer
service or personal assistance; language
translation, which involves converting text
from one language to another; and sentiment
analysis, which involves determining the
sentiment expressed in a text (Vaswani et al.,
2017).

e Transfer learning: Transfer learning involves
applying knowledge gained from one domain
to another. It is beneficial when there are
limited data available for a specific task. Pre-
trained models can be fine-tuned to perform
new tasks efficiently, often using deep-learning
models as a starting point (Goodfellow, Bengio
and Courville, 2016).

e Large language models (LLMs): LLMs such
as GPT-3 represent a significant advancement
in ML and NLP, and are the foundation of
GAIl. These models have a vast number of
parameters and can produce text that is similar
to human-generated content and understands
context. Some applications of LLMs include
(Vaswani et al., 2017):

o text generation: creating coherent and
contextually relevant text

o conversation agents: engaging in natural
conversations with users

In conclusion, by understanding and utilizing

the different categories and subfields of Al
technologies, we can tackle complex challenges
such as DRR. These technologies allow for
accurate predictions, identification of hidden
patterns, improvement of models with limited
labelled data, and enhancement of decision-making
by interacting with dynamic environments.
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1.4 Benefits of Al technologies in the
DRR domain

Al technologies are crucial in DRR, offering a wide
array of benefits that greatly enhance the efficiency
and effectiveness of disaster management.

These technologies enable the development of
advanced early warning systems, near-real-time
data processing, and predictive models for extreme
weather events, which in turn facilitate proactive
measures and optimized resource allocation. For
instance, Al and ML can more efficiently deploy
resources such as emergency responders, medical
supplies and relief materials. Additionally, they

can enhance disaster management through real-
time traffic management, smart infrastructure
monitoring and crowdsourced data utilization,
ensuring a more responsive and effective approach
to mitigating the impacts of disasters.

Furthermore, Al and ML play a key role in risk
assessment, hazard mapping and decision-making
support during and after emergencies, leading

to better outcomes in terms of saving lives and
reducing economic losses in the face of different
types of disasters. The following section presents
some current use cases.

2. Case studies of Al
technologies in DRR

Case studies are essential for understanding Al
technologies’ real-world applications and benefits
in terms of DRR. The following sections will provide
specific examples of how these technologies

can be effectively applied, showcasing their
potential to transform disaster preparedness,
response and recovery. By illustrating practical
implementations, case studies go beyond
theoretical concepts and highlight the tangible
advantages of Al technologies over traditional
methods. This comparative analysis helps the DRR
community understand the added value that these

technologies bring, particularly in terms of speed,
accuracy and efficiency.

Our goal is to demonstrate that case studies serve
as proof of concept, validating the effectiveness of
Al technologies in DRR and providing quantitative
evidence that can convince the user community,
from policymakers to practitioners. Furthermore,
they highlight best practices and lessons learned,
offering insights into challenges faced during
deployment and adoption. Beyond technical
hurdles, adoption challenges may arise due to
institutional resistance, lack of technical expertise,
data accessibility issues and the need for
regulatory alignment. For instance, organizations
may struggle to integrate Al-driven solutions due to
legacy systems that are incompatible with modern
technologies. At the same time, policymakers may
hesitate due to uncertainties about Al's reliability
and ethical implications.

Additionally, limited funding for Al initiatives

and end-user scepticism can slow adoption.
Addressing these barriers is critical to successfully
integrating Al technologies into DRR practices. This
knowledge is invaluable for refining strategies and
improving future implementations.

Further, by detailing applications, significance and
future outlooks, case studies offer a road map for
leveraging Al technologies in DRR, encouraging
continuous innovation and improvement in disaster
risk management.
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USE CASE: Apfplication of ML for the
mass movement susce

preparation o

tibility

maps through discriminant analysis: the _
Popayan to Mazamorras River Road, Colombia

Alejandro Blanddn-Santana, Carlos Arturo Garcia-Ocampo and Pedro Ledn
Garcia-Reinoso, Universidad del Quindio, Armenia, Colombia

Project overview: The Popayan to Mazamorras
River road is vulnerable to landslides and mass
movements due to its geological and topographical
conditions. This project aims to develop an
ML-based methodology to assess and map
susceptibility to mass movements along the
corridor using geographic information systems
(GIS) and discriminant analysis. Traditional
susceptibility assessments often rely on expert
judgment, which introduces subjectivity. The use
of ML techniques automates and enhances the
accuracy of risk assessment by reducing human
bias and ensuring data-driven classification.

By incorporating topographical, geological,
vegetation and infrastructure variables, the

model objectively identifies unstable zones

and generates susceptibility maps. The project
leverages ArcGIS Pro for geospatial processing
and Python-based ML algorithms for classification,
assigning areas into low-, medium- or high-risk
categories. This methodological shift improves risk
assessment consistency, enabling more reliable
decision-making for disaster prevention and road
infrastructure management (Smith, Goodchild and
Longley, 2018).

Description: A workflow (Figure 3) and tool
programmed in Python, developed within

the ArcGIS Pro environment, employs linear
discriminant analysis (LDA) to classify terrain
susceptibility to mass movements. The tool
improves upon traditional methods by integrating
geospatial data and ML techniques for a data-
driven, automated risk assessment approach.

Unlike traditional GIS-based assessments, which
often involve manual weight assignments, this
ML-based approach objectively analyses multiple
environmental factors including: a) topographical
factors: slope, curvature and orientation; b)
geological conditions: rock type and fault proximity;
c) vegetation coverage; d) infrastructure influences:
roads and drainage networks. By automating

the classification process, the model minimizes
subjective judgment, ensuring a consistent,
repeatable evaluation of mass movement
susceptibility. Additionally, automation reduces
processing time, allowing for more-frequent
updates and improved scalability across different
road corridors.
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Figure 3. Flow diagram of the implementation of the methodology using the script
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Perspective: This methodology represents one of
the first ML-based landslide susceptibility mapping
efforts in the region, offering valuable insights

for infrastructure planning. By automating the

risk assessment process, the tool enables more-
accurate identification of high-risk zones, ensuring
that vulnerable areas are properly recognized and
addressed. It also facilitates the efficient allocation
of resources for disaster risk mitigation, allowing
the authorities to prioritize interventions where
they are most needed (Franga, 2012). Additionally,
the methodology has the potential for broader
application in similar road corridors across
Colombia, contributing to a more comprehensive

approach to landslide prevention and management.

The Python-automated framework allows for future
enhancements, including the incorporation of more
advanced ML models and real-time geospatial

data updates to further improve the accuracy and
responsiveness of risk assessments.

Type of Al/ML used: The project employs LDA, a
supervised ML technique used for classification.
This method is implemented using scikit-learn

Layer susceptibility to
mass movements

within Python and integrated into ArcGIS Pro for
spatial analysis. LDA was selected for its ability

to separate stable and unstable areas based

on multiple predictor variables, including slope
(PEND), curvature (CURV), orientation (ORIE),

flow accumulation (ACUM), geology (GEOL),
geomorphology (GEOMR), vegetation coverage
(COBERR), and proximity to faults (DFAL), roads
(DVIA), and drainage networks (DDRE), ensuring a
data-driven classification approach. Unlike heuristic
methods that rely on expert weight assignments,
LDA systematically evaluates relationships
between these terrain attributes and susceptibility,
providing a more objective and reproducible risk
assessment framework. Additionally, LDA provides
clear interpretability, allowing researchers and
decision makers to understand which factors
contribute most to mass movement risk. The
integration of Python libraries streamlines the
model’s execution, enhancing reproducibility

and efficiency in geospatial analysis (Baeza and
Corominas, 2001).
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Figure 4. Field verification of areas susceptible to mass movements
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Best practices:

Institutional consideration: The National Roads
Institute (INVIAS) follows a structured risk
management framework. This project aligns
with its efforts to transition from a reactive to a
proactive disaster management approach (Law
1523 of 2012).

Advancing risk knowledge: Previously, risk
assessment relied on manual GIS workflows
with limited automation. The integration of

ML into GIS-based susceptibility mapping
improves decision-making, reduces processing
time and increases reliability.

Standardized classification methodology:
Areas were classified as having low, medium
or high susceptibility based on: a) statistical
thresholds derived from the discriminant
analysis results; b) field verification and

comparison with historical landslide
occurrences; c) expert validation from
geotechnical specialists. This classification
ensures that susceptibility levels are data-
driven rather than subjectively assigned
(Aristizabal-Giraldo, Vasquez Guarin and Ruiz,
2019).

Lessons learned: The adoption of ML-based
methods for landslide susceptibility mapping
introduced both advantages and challenges.

One of the primary challenges was ensuring

the availability and accuracy of topographical,
geological and infrastructure data, as
inconsistencies in input data directly affected
the model’s predictive performance. Despite
these limitations, transitioning from manual

GIS modelling to a Python-automated process
significantly improved efficiency, reducing human
intervention and subjectivity in weight assignment.
This automation allowed for faster and more-
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standardized assessments, making it easier to
replicate the methodology across different road
corridors. Model validation was another key
challenge, as field verification remains essential
for confirming predictions. The tool's results were
cross-referenced with real-world observations and
INVIAS road administrators’ reports, demonstrating
that 96 per cent of identified high-risk zones
corresponded to known critical sections. However,
the model’s validation accuracy reached only 61
per cent, highlighting the need for improvements
in data quality and potentially the incorporation

of additional ML techniques such as ensemble
models or hybrid approaches to refine predictions
(Smith, Goodchild and Longley, 2018). A key
lesson from this case study is that ML-based

risk assessments require both robust data and
institutional adaptation. While the use of Python
and ArcGIS Pro facilitated automation, the full
integration of ML into risk management workflows
requires further capacity-building, training and
policy alignment within agencies such as INVIAS.
Future improvements should focus on expanding
data sets, improving model interpretability and
integrating real-time geospatial data to enhance
predictive accuracy and adoption in infrastructure
planning.

USE OF TECHNOLOGY FOR DISASTER RISK REDUCTION
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USE CASE: Zoning of vulnerability to wildfires
based on fuzzy logic and Al. Procalculo
Research and Development Group

Martha Patricia Valbuena Gaona MSc.

Project overview: The Colombian Institute of
Hydrology, Meteorology and Environmental Studies
(IDEAM) has developed a methodology for zoning
the risk related to the occurrence of wildfires

for a national analysis (IDEAM, 2015). When

Figure 5. Vulnerability zoning in the eastern area of Bogota

developing this methodological proposal, paramo
ecosystems® and areas such as the Eastern Hills
of Bogota showed low vulnerability to wildfires due
to their meteorological, altitudinal and ecosystem
conditions.

Medium vulnerability
[0 Low vulnerability

However, extreme meteorological phenomena
such as the El Nifio season and human intervention
meant that by the first quarter of 2024, thousands
of hectares of these ecosystems were affected by
wildfires, affecting the flora, fauna and populations
near these areas (Cai et al., 2020).

Considering this context, a methodology based on
the IDEAM methodological approach is proposed
for local analysis of the zoning of vulnerability
around fire occurrences.

Description: Fuzzy logic brings the computational
decision process closer to human decision-making,

6 Regions above the continuous forest line, yet below the permanent snowline.
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making machines more capable of handling
complex problems (Novak, 2012). Fuzzy logic can
be a mathematical basis for many ambiguous and
inexact variables and systems. It can also provide
the basis for reasoning, interpretation, control and
making decisions under conditions of uncertainty
(Agueda et al., 2023). For local risk management,
this methodology is ideal as it allows the modelling
of multi-criteria variables, taking into account their
direct influence on the phenomenon studied, on

a more detailed scale, offering a higher precision
(Juvanhol et al., 2021).

Why it is important: This methodology allows the
study of natural phenomena at the local level so
that municipal and departmental governments can
take action to prevent, address and manage the
risk associated with said phenomena.

Perspective: There are plans for this methodology
to be extrapolated to other types of disasters, such
as landslides and floods, that occur in Colombia
during the La Nifia phenomenon seasons.

Type of Al/ML used: ML is useful for classifying
land cover, which is the main input for plant fuel
analysis. In this case, three classes were obtained:
grasslands, forests and bare soil. The second
variable corresponds to the temperature of the
Earth’s surface, for which a Landsat 8 image

was used. The image bands were downloaded
from the USGS EarthExplorer, and the brightness

temperature and emissivity were calculated
(Andrés-Anaya, 2019).

The topographic analysis was developed using

a digital elevation model (DEM), provided by the
Alaska Satellite Facility (ASF). With this DEM, a
slope raster was calculated for the third variable.
DEMs are commonly used in hydrological and
geomorphological analyses, but the impact of
terrain height in assessing wildfire vulnerability has
also been highlighted (Kanga Tripathi, and Singh,
2017).

The CNN, based on deep-learning methods, has
produced advances in extracting information from
various data sources that can be represented and
structured as satellite images (Maxwell et al.,
2023). Taking advantage of Planet’s high-resolution
imagery, using deep-learning models allowed the
extraction of paths for multi-criteria analysis.

The fourth variable was related to road
accessibility, thus including the impact of human
presence on the occurrence of wildfires. Latin
samples were used to train the deep-learning
algorithm for road extraction. This model is based
on a scheme that can encode the road network
graph into a three-dimensional tensor. This scheme
enables a simple neural network model to be
trained to map satellite images onto the road
network graph. The construction of the graphs is
focused on segmentation with CNN and detecting
edges and vertices (He et al., 2020).
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Figure 6. Historical FIRMS fires, Bogota

Best practices: The high-resolution imagery
selected was Planet Scope. With three metres

of spatial resolution, eight bands in the
electromagnetic spectrum and daily temporal
resolution, this type of image allows constant
monitoring of the territory on a detailed scale and
with the possibility of generating a deep spectral
analysis.

Regarding the algorithms, support vector machines
are proposed, corresponding to a supervised
classifier known as one of the main ML classifiers
that have achieved outstanding classification
results (Ashiagbor et al., 2020). Seventy per cent
of the samples were used for model training and
30 per cent were used for validation. Based on the
classification, each cover type was classified into a
threat category to generate the plant fuel variable.

Lessons learned: The vulnerability zoning results
are compared with historical wildfire data
information in the resource management system
(NASA FIRMS). It is concluded that there is a 91
per cent spatial correlation between the areas of
greatest vulnerability and the greatest occurrence
of fires in the study area (the Eastern Hills of
Bogota).
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USE CASE: Management of water resources
in El Nino and La Nina phenomena based on
multi-temporal analysis of satellite images

Martha Patricia Valbuena Gaona MSc.

Project overview: La Nifia and El Nifio are cyclical
phenomena that periodically affect Latin America
and generate abrupt consequences on the state of
water bodies. Floods and droughts are increasing
due to global warming, which exacerbates the
effects of these natural meteorological phenomena
(Cordero et al., 2024). With warmer climatic
conditions, projections suggest that changes in
the different components of the water cycle will
continue, although there are uncertainties about
the occurrence of droughts and floods (Moreno
Rodriguez, 2020).

Remote sensing offers a wide set of data related
to the state of water bodies. By combining this
information with meteorological data, it is possible
to develop models that allow national and local
governments to predict the behaviour of water
bodies during each of the seasonal phenomena
(Nifio and Nina).

Description: Neural networks are a type of Al model
designed to recognize complex relationships
between variables and make predictions based on
patterns in data (Vega, Barco and Hidalgo, 2024).
In this project, neural networks are employed to
analyse meteorological and seasonal variables
alongside remote sensing data to predict changes
in the San Rafael Reservoir area. The reservoir,
located near Bogotd, Colombia, is a key component
of the Chingaza water supply system, which
provides approximately 80 per cent of Bogotd's
potable water. It plays a crucial role in ensuring
water availability, especially during maintenance
periods or emergencies when other sources may
be compromised.

To model these fluctuations, the water mirror

area was extracted using satellite images and

ML techniques for coverage classification. This
approach ensures an accurate representation of
the reservoir's dynamics, allowing authorities to
anticipate water shortages and manage resources
proactively.

Perspective: This methodology will be extrapolated
to other bodies of water, both lentic and lotic, to
manage, address and prevent the occurrence of
disasters such as floods and droughts.

Type of Al/ML used: The San Rafael Reservoir is
located near Bogota, Colombia, and plays a vital
role in the city’s water supply system. It is crucial
for providing water during maintenance periods
and emergencies, although it has faced challenges
with low water levels in recent years. The reservoir
is part of the Chingaza system and supports the
surrounding ecosystem. Its natural beauty also
makes it a notable recreational area.

Deep neural networks learn predictive relationships
by using a series of non-linear layers to construct
intermediate feature representations (Lim and
Zohren, 2021). In this study, neural networks allow
meteorological variables such as precipitation,
temperature, seasonal phenomena (Nifio or Nifia)
and date to be associated with the area of water
bodies.

On the other hand, to calculate the area of water
bodies, the Object-Based Image Analysis (OBIA)
approach to classification was implemented, which
provides advantages over pixel-based techniques,
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such as greater precision in the classification of
coverage. The OBIA approach consists of two
phases, segmentation and classification, which
are carried out to obtain the most significant
objects in the image and to be able to categorize
the elements into the previously defined classes
(Ettehadi Osgouei, Sertel and Kabadayi, 2022).
This classification takes into account the objects’
spectral response and adds variables such as size,
shape and homogeneity to the analysis.

Best practices: Near-infrared spectral information
is required for the extraction of water bodies since
this spectrum presents the greatest differential
response in multispectral images. Information

is extracted from the NASA Prediction Of
Worldwide Energy Resources (POWER) project and
derived from satellites such as Climate Hazards
InfraRed Precipitation with Station (CHIRPS)

for the meteorological data that are part of the
independent variables. The CHIRPS data set is a

Figure 7. Water body area in February 2023

long-term precipitation record developed for trend
analysis and seasonal monitoring of rainfall and
drought. The data set was validated in several
regions in a global-scale analysis and provided
satisfactory monthly, seasonal and annual
precipitation variability (Ocampo-Marulanda et

al., 2022). These data have global coverage, and
when comparing temperature data with the IDEAM
meteorological stations, there is a correlation of
85 per cent.

Lessons learned: By integrating remote sensing and
Al techniques, it is possible to model up to 87 per
cent of the behaviour of water resources. This type
of model implemented by the national and local
governments allows water resource management
for the prevention, attention and management of
phenomena such as droughts and floods that are

a product of climate change and their effects on
seasonal phenomena (e.g. La Nifia and El Nifio).

Canmgdrario
San Kl gin

Source: Colombia, Cundinamarca 2024. Planet Labs PBC. All rights reserved. 2024.
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Figure 8. Water body area in March 2024

Source: Colombia, Cundinamarca (2024). Planet Labs PBC. All rights reserved. 2024.
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USE CASE: Leveraging Al/ML in Google Earth
Engine for soil use classification and risk

monitoring in Bolivia

Fernando Arturo Ledezma Perizza’

This document, along with its code methodology
and results, establishes a robust framework for
employing Al/ML in environmental monitoring,
promoting sustainable land-use practices and
enhancing resilience against natural hazards in
Bolivia.

Description: This document explores the
application of Al and ML techniques within Google
Earth Engine to classify soil use types in Bolivia.
The approach utilizes Landsat 8 satellite imagery
processed through Google Earth Engine, applying
a “Random Forest” classifier to categorize land-
cover types such as urban areas, vegetation, water
bodies and grasslands.

Why it matters: Accurate land-cover classification
is crucial for monitoring risks such as wildfires,
deforestation and the environmental impacts

of urban expansion. In Bolivia, where diverse
ecosystems are vulnerable to climate change and
human activities, precise monitoring using Al/ML
can support timely intervention and sustainable
resource management.

Outlook: The integration of Al/ML with Google
Earth Engine offers scalable and efficient tools for
environmental monitoring and risk management.
Future advancements could enhance classification
accuracy and expand the scope of applications in
biodiversity conservation and disaster response.

7 Email: fernandoledezma.p@fcyt.umss.edu.bo

Type of Al/ML used: The project employs
supervised learning, specifically the Random
Forest algorithm, for land-cover classification.

This method has been chosen for its robustness in
handling multispectral satellite data and its ability
to classify complex landscapes with high accuracy.

Best practices:

e ‘“Feature Collection” fusion: Combine urban,
vegetation, water and grassland feature
collections into a unified data set for classifier
training.

e Quality assessment: Employ error matrices
and accuracy assessments to validate
classification results and refine model
performance.

e Temporal analysis: Incorporate multi-temporal
satellite imagery to dynamically monitor land-
cover changes over time.

Lessons learned:
e Data pre-processing: Effective pre-processing,
including image masking and band scaling, is

critical for enhancing classification quality.

e Model tuning: Iterative adjustment of
classifier parameters and band selection can
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significantly improve accuracy and reduce
overfitting.

e Community engagement: Collaborative
efforts with local stakeholders ensure Al-
driven solutions are contextually relevant and
applicable.

Methodology: The methodology follows a
structured workflow for land-cover classification
using Landsat 8 imagery and a Random Forest

classifier. It begins with pre-processing, including
masking, calculating median composite and
defining feature sets and bands for classification.
Training data are then generated to develop the
model, followed by training the Random Forest
classifier and classifying the composite image.
Finally, the classified image is displayed, and
accuracy is assessed through evaluation metrics,
including a confusion matrix, to ensure the
classification results are reliable.

Figure 9. Step-by-step workflow of the Al/ML-based land-cover classification methodology in Google Earth

Engine
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Figure 10. Inter-annual soil use classification results 2019-2023 for Bolivia

Source: Google Earth Engine

Figure 10 presents the annual classification
results of soil use in Bolivia from 2019 to 2024,
categorized into four primary land-cover types:
urban areas, vegetation, water bodies and
grasslands.

e Subfigure 10 a (2019): lllustrates the soil use
classification for the year 2019, showing the
distribution of urban areas, vegetation, water
bodies and grasslands and deforestation.

e Subfigure 10 b (2020): Displays the
classification for the year 2020, highlighting
changes and trends in land cover compared
with the previous year.

e Subfigure 10 c (2021): Represents the
classification results for 2021, indicating
further developments in land-use patterns.

@ Urban area (dots)
@B Vegetation

@B \Vater bodies
@3 Grassland and
deforestation

Subfigure 10 d (2022): Shows the classification
for 2022, reflecting ongoing shifts and
modifications in the land-cover types.

Subfigure 10 e (2023): Depicts the
classification for 2023, demonstrating the
continued evolution of soil use in Bolivia.

Each subfigure includes all the land-cover types
(urban areas, vegetation, water bodies and
grasslands), providing a comprehensive view

of how soil use has changed annually. The high
classification accuracy, consistently above 0.998,
underscores the reliability of the Random Forest
classifier utilized in this study.

These visualizations are crucial for understanding
the dynamic changes in Bolivia's land cover and
aiding in environmental monitoring, resource
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management and strategic planning for
sustainable development.

Conclusion: This methodology using Al/ML in
Google Earth Engine critically supports monitoring
risks in Bolivia by accurately classifying soil use
types and detecting land-cover changes. It enables
early detection and response to natural hazards,
assesses environmental impacts, aids in climate
change adaptation and supports sustainable
resource management. The insights generated
empower decision makers with timely information
for policy formulation and disaster preparedness,
while also engaging local communities in
monitoring efforts to enhance resilience and
awareness. Overall, this approach contributes to
proactive environmental management and effective
risk reduction strategies in Bolivia.

USE OF TECHNOLOGY FOR DISASTER RISK REDUCTION
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USE CASE: Large-scale building damage
assessment using a novel hierarchica
transformer architecture on satellite images

Dr. Ali Mostafavi

Project overview: The building damage assessment
project presents DAHITrA, a novel deep-learning
model using hierarchical transformer architecture
to classify building damage extent from satellite
imagery in the aftermath of disasters. Utilizing
hierarchical transformers, this innovative approach
extracts spatial features of multiple resolutions
and captures temporal differences to achieve
state-of-the-art performance in building damage
classification. The project introduces the Ida-BD
data set, related to the 2021 Hurricane Ida, to
demonstrate model adaptability with limited fine-
tuning, enabling effective damage assessment in
data-scarce scenarios. DAHIiTrA's primary focus

is on supporting rapid and accurate post-disaster
assessments to assist efficient emergency
response.

Description: This project aims to enhance the
accuracy and efficiency of post-disaster building
damage assessment using satellite imagery.
The proposed method addresses the complexity
of directly concatenating features for damage

localization by focusing on the differences
between pre- and post-disaster images. To
achieve meaningful and unbiased assessments,
the method employs difference blocks to map
features onto a common domain, accommodating
variations in lighting and weather conditions.
Utilizing a hierarchical U-Net-based structure, the
network captures features at multiple resolutions,
forming a detailed hierarchy to accurately classify
and localize damage. The proposed network
achieves state-of-the-art performance on a large-
scale disaster damage data set (xBD) for building
localization and damage classification, as well

as on the LEVIR-CD data set for change detection
tasks. In addition, the project introduces the Ida-
BD data set, containing high-resolution images
from Hurricane lda, to test and refine the model’s
adaptability to new disaster scenarios. This work
demonstrates the effectiveness of the proposed
method through transfer learning. Figure 11 shows
the building damage assessment results of the
proposed method on the Ida-BD data set.
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Figure 11. Building damage assessment results on the Ida-BD data set

Pre-disaster
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Why it matters: This project is significant for its
potential to optimize emergency response efforts
following disasters. Accurate and rapid damage
assessment is critical for efficient resource
allocation and timely humanitarian aid. By
leveraging advanced deep-learning techniques and
high-resolution satellite imagery, the outcome of
this project can significantly improve the resilience
and preparedness of affected regions, ultimately
saving lives and reducing economic losses. For
stakeholders, including government agencies,
NGOs and disaster response teams, DAHITrA
offers a powerful tool to inform and streamline
their operations, ensuring a more effective and
coordinated response to natural disasters.

Outlook: In future work, the architecture’s
applications could be extended to other civil
infrastructure assessments, such as road
damage classification, structure change detection
and urban land-cover change classification.
Sustainability efforts will focus on continuous
model improvement and data set updates

to address emerging disaster patterns and
infrastructure needs.

Type of Al/ML used: The DAHiTrA model utilizes
a combination of vision transformers (ViTs) and
U-Net architectures for change detection in satellite
images. ViTs capture global context and long-range

dependencies in pre- and post-disaster images
using self-attention mechanisms, while U-Net
excels in multiresolution feature extraction and
precise image segmentation through its encoder-
decoder structure with skip connections. This
synergy enables the model to accurately classify
and localize building damages.

Best practices: Ensuring consistent pre-processing
of satellite images, including normalization and
alignment, is crucial to mitigate variations caused
by different lighting, weather conditions and
imaging sources. The model training process
should begin with a large data set, followed by the
application of transfer learning techniques and
fine-tuning with targeted data sets to enhance
adaptability and performance in new disaster
scenarios.

Lessons learned: For building damage extent
assessment, model accuracy differs among
different damage extents because of imbalanced
data or difficulty in detecting differences.

Serious unaligned data also cause decreases in
performance. Nevertheless, the model is expected
to perform fairly well across different regional
contexts.

O
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USE CASE: MaxFloodCast: Ensemble machine
learning model for predicting peak inundation
depth and decoding influencing features

Dr. Ali Mostafavi

Project overview: This project aims to provide XGBoost, to predict peak inundation depths in
accurate and interpretable flood inundation flood-prone areas. The model is validated against
predictions using an innovative ensemble ML historical flood events, including Hurricane
approach. It develops the MaxFloodCast model, Harvey and Tropical Storm Imelda (see Figure
which integrates physics-based hydrodynamic 12), demonstrating its ability to deliver reliable
simulations with ML techniques, particularly predictions with reduced computational costs.

Figure 12. Test R-squared and RMSE of experiments 1 - A,B and 2- C,D

A . B .
c |. D .

R-sguared RMSE (m)
Description: The primary goal of this project is to historical flood events to assess performance.
predict peak inundation depths accurately while The project’s innovative approach lies in its ability
providing interpretable insights into the factors to reduce computational costs significantly,
influencing flood risks. By incorporating rainfall enabling near-real-time predictions that can inform
data and leveraging a grid-based representation emergency response and floodplain management
of the study area in Harris County, Texas, the strategies while maintaining model interpretability
project addresses the challenge of computational and adaptability across different regions.
inefficiency associated with traditional
hydrodynamic models. The validation process Why it matters: The significance of this project lies
involves comparing model predictions against in its ability to address the critical need for timely,
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accurate and interpretable flood predictions, which
are essential for effective emergency response and
flood risk management. By significantly reducing
the computational cost and time required for flood
modelling, the project enhances the capabilities of
stakeholders in anticipating and mitigating flood
impacts. The broader implications for stakeholders
include improved floodplain management,
enhanced resource allocation during emergencies
and the potential for adapting the model to other
flood-prone regions, thereby contributing to more-
resilient and better-informed communities.

Outlook: The long-term benefits include the
potential for widespread adoption of the model

by municipalities and regions prone to flooding,
facilitating proactive and data-driven flood
management strategies. Sustainability efforts will
focus on ensuring the model remains adaptable
to changing environmental conditions and urban
developments, which can alter flood dynamics.
However, potential challenges include the need for
continuous data updates. Despite these challenges,
this project holds significant potential for
enhancing resilience and supporting sustainable
urban planning and disaster preparedness.

Type of Al/ML used: This project employs a
combination of Al and ML techniques, specifically
utilizing the XGBoost algorithm, which is known
for its robustness and efficiency in handling

large data sets. XGBoost is a gradient-boosting
framework that constructs predictive models

by combining the strengths of multiple decision
trees to improve accuracy and reduce overfitting

. The input features include rainfall data, as well
as topographic and hydrological features (such

as imperviousness and height above nearest
drainage). This technique is particularly well-suited
for the MaxFloodCast project as it enables the
model to capture intricate relationships between
various environmental features, such as peak and
cumulative precipitation, and their impact on flood
inundation.

Best practices: In model training, employing
a large and diverse set of simulation events

and features, including peak and cumulative
precipitation data, is crucial for capturing the
complexity of flood dynamics. Engaging users,
such as emergency managers and urban planners,
early on in the development process is vital to
tailor the model's outputs to their specific needs
and ensure its practical applicability. Additionally,
developing intuitive tools that present model
results in an interpretable format fosters greater
trust and adoption among stakeholders, enabling
more informed decision-making in flood risk
management.

Lessons learned: One major takeaway is the
importance of high-quality, high-resolution data

in achieving accurate flood predictions; the use
of physics-based hydrodynamic simulations
combined with ML significantly enhances the
model’s precision. Another important lesson is
the necessity of continuous user training and
engagement to ensure that stakeholders can
effectively interpret and utilize the model’s outputs
in real-time decision-making. Adopting this model
in other regions would require some baseline
models (H&H models) for evaluating the model’s
performance in a new context.
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USE CASE: Proactive disaster risk mitigation
using year-ahead alerts with actionable

analytics

Subarna Bhattacharyya

Description: Climformatics is an early warning
system decision support tool that provides year-
ahead alerts with actionable analytics built using
ML to make highly accurate climate predictions

at the 2—3 km? scale covering the coming

6—12 months. These tools span the interface
between weather and climate, and can be as
accurate for any given day many months ahead as
the traditional nightly weather forecast for that day.

e Technology bridges the gap between weather
and climate: This predictive tool offers
localized climate and weather forecasts with
high accuracy, covering time frames ranging
from near-term to long-term and scales as
fine as <30 km. By leveraging cutting-edge
technology (Bhattacharyya and Ivanova, 2017),
it applies data science and ML methods to
large-scale physics-based climate model
data sets. It addresses gaps in subgrid
scale processes that are not yet captured
by traditional weather and climate models.
This system provides highly localized climate
predictions on various timescales, from
hourly to seasonal and even up to one year in
advance, for applications such as solar power,
net load, fire weather, heatwaves and localized
climate trends.

e This solution enables energy and utility
companies to model capacity with precision,
anticipate climate-related disasters, proactively
mitigate risks and improve long-term
sustainability and profitability. The technology
is globally scalable across various sectors,

including agriculture, renewable energy and
water resources management.

e These data products include an early warning
system to support utility companies’ decision-
making, hourly solar power forecasts for
modelling reductions in load due to behind-the-
meter solar production, and actionable climate-
smart insights for proactive risk resilience
and energy efficiency. CTOs could utilize
these products to optimize operations and
support informed decisions. By forecasting
extreme weather events at regional and
hyperlocal levels, this tool complements
existing energy and disaster preparedness
market technologies, and there are plans for
future integration that will not disrupt business
operations.

Why it matters: Current operational weather

and climate forecasts, as well as future climate
projections modelled on future greenhouse gas
emissions, have limitations in accuracy and
predictive ability. Moreover, these forecasts

are more general and cannot be used to make
actionable decisions on the anticipated nature,
location and time of occurrence of the natural
climate disaster sufficiently in advance. A modern,
more forward-looking model is needed for
proactively mitigating the risks of natural climate
hazards. Al will allow a much more accurate
appraisal for the coming year of seasonal factors
such as rainfall and heat (driving drought, wind,
flood and wildfire risk, and heat stress on people,
livestock and the energy grid), and also seasonal
food supply. This will enable months of advanced
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warning and preparation, for example in stockpiling
supplies and pruning vegetation near power lines
in high-risk locales, that could well attenuate what
would otherwise have been a bigger disaster.

Benefits: These tools have a strategic focus

on “holonomic” solutions, which tackle critical
challenges in sustainable energy, water
management, food resilience and food security.
Such advanced climate prediction tools empower
communities and industries to thrive by offering
“climatization” solutions for proactive risk
mitigation, improved resource management, and
sustainability, leading to broader societal benefits.
Specifically, these solutions offer three primary
benefits:

e Disaster mitigation and improved efficiency:
This tool enhances efficiency across multiple
sectors and dimensions by providing unique
insights into the future, enabling more-precise
investments and optimized operations.

This reduces redundancies and costs,
improves supply chain management and
lowers emissions, leading to cost savings in
energy generation and optimized agricultural
productivity.

e Emission reduction: By facilitating greater
penetration of solar and green energy, the
tool contributes to lower electricity/energy
prices, benefiting economically disadvantaged
communities.

e Sustainability: Climformatics is committed to
enabling customers achieve the three pillars of
sustainability: economic growth, environmental
protection and social equity.

Outlook: We need a forecast tool with increased
spatial granularity and temporal range (for
improved accuracy for any given locale or day)
and increased integration with background data
(for example, soil saturation to help assess run-
off, or vegetation types and levels to help assess
wildfire risks) to predict the possible localized
consequences of the weather in question. With

such a tool, we could have alerted authorities well
in advance about the risk of a hurricane over Maui,
considering the potential fire weather conditions,
to mitigate the risk and prevent the loss of lives,
trauma and devastation similar to the 2018 Camp
Fire that devastated Paradise, California, as well as
the 2025 Los Angeles fire in Eaton, California. This
tool is now available. We can warn communities
and governments about upcoming extreme climate
events including heatwave, fire weather, drought or
severe rainfall coming their way at their business
and community locations, not days but months,
seasons or a year in advance. This will enable
proactive measures to “climatize” operations,
protect businesses and communities against
interruptions and prevent loss of lives, livelihoods
and properties.

Type(s) of Al/ML used: Several applied
mathematical and statistical tools together with
machine and deep-learning tools such as artificial
neural networks have been used.

e Use case validation of these models:

2024 Texas Smokehouse Creek Fire: At the
request of one of our Climformatics partners,
we validated our technology solution in a case
study of the largest fire in the history of Texas

- the Smokehouse Creek megafire. It began

on 26 February 2024, near Stinnett, Texas, and
was contained on 16 March 2024, after burning
1,058,482 acres and causing $4.6 million in
damages and over $200 million in lawsuits. We
produced three-month probabilistic forecasts of
daily fire weather variables, including temperature,
relative humidity, wind speed and the Fosberg
Fire Weather Index (FFWI) for four locations in
the vicinity of the Smokehouse Fire: Stinnett,
Pampa, Canadian and Seiling, Texas. The figure
demonstrates that Climformatics forecasts were
able to capture the extreme weather event at

the time of the Smokehouse Fire incident three
months in advance. Our analysis shows that there
was a four-day (25-29 Feb 2024) heatwave with
anomalously high temperatures for the season
in the range of 75-90°F. The relative humidity
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dropped to ~20 per cent. These, combined with the heatwave and the extreme fire danger (see
gusts of over 20mph, created conditions of Figure 13).
extreme fire danger. Climformatics forecasted both

Figure 13. Climformatics Early Alert System Technology could have predicted the Texas Smokehouse megafire
in 2024 at least three months ahead

Utility Problem Climformatics Solution
Smokehouse Fire Climformatics Forecasts Capture
Use Case the Extreme Event 3 Months Ahead

+ Started 1 mile north of Stinnett, Texas on
February 26t 2024, ended March 16t
2024.

* Burned area: 1,058,482 acres.

+  Caused $4.6 million in damages

™~
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2025 Los Angeles Fires: The 2025 Southern burned 14,021 acres, destroying 9,418 structures
California Wildfires started on 7 January 2025 and damaging 1,073. Economic losses
and were contained on 31 January 2025. The totalled around $250 billion, with an estimated
fires covered the areas of Palisades and Eaton, $35-45 billion in insurance payouts. The
California, resulting in 29 casualties (17 in Eaton Climformatics tool could have predicted such high
and 12 in Palisades). The Palisades fire covered fire risk at least a month ahead in this case with
23,707 acres, destroying 6,837 structures and great actionable accuracy. (See Figure 14)

damaging an additional 1,017. The Eaton fire
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Figure 14. The Climformatics Fire Weather Prediction tool could have forecasted the High Fire Weather Index
on 10 January 2025 for Eaton (see map in 2(a)) and Palisades (see map in 2 (b)). Figure 14 (c ) shows the
forecasted Severe Fire Danger Index for Palisades for 10 January 2025 as compared to observations.

Precipitation prediction validation: This
technology was extensively tested and
validated with monthly frequency time series of
precipitation and temperature for 2011-2016 in
300 ZIP Codes across California’s agricultural
areas. A comparison in Figure 14 demonstrates
the accuracy of NLPP (Near-to-long-term
Precipitation Prediction) compared with CIMIS
(California Irrigation Management Information
Systems) observations and retrospectively
National Oceanic and Atmospheric
Administration (NOAA) nine-month forecasts

for seasonal rainfall in two locations 8.4 miles
apart in Santa Barbara, CA. This example
demonstrates that the current NOAA CFSv2
predictions are not capable of resolving the
variety of microclimates, i.e. NOAA’s forecasted
rainfall amount for the two locations in

Santa Barbara was the same, and it also
considerably overestimated the actual rainfall
by about 170 inches/season. Climformatics’
predictions for the same locations are
dramatically improved, with errors of about

4 inches/season.
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Figure 15. Comparison of seasonal (Oct—May) total precipitation (inches) between CIMIS observations/actuals
(blue), NLPP forecast (green) in: a) Santa Barbara, CA — downtown; b) Santa Barbara, CA - airport; c) same as
a); d) same as b) but for CIMIS (blue) and NOAA-CFS forecast (grey) [Note the scale difference].
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Tools such as this may need to be substantially
tailored for each use case and customized
further for each customer.

Best practices: Current catastrophe risk
modelling applied to disaster preparedness is
backward-looking since it is often based on
legacy risk models that use long-term historical
data. Best practice will increasingly be a forward-
looking emerging catastrophe risk model that
can additionally capture the physics of the ever-
changing weather and climate conditions.

These tools will also need to be easy to use
and easily adaptable for feeding into any
existing business decision support tool that the
customer may be using.

The use of Al in no way replaces forecasting
expertise — skill and experience is still required

Lessons learned:

Al and physics-based models can be especially
powerful.

Such efforts require large-scale computational
resources in order to scale from smaller
regions to global locations and may become
computationally expensive.

There are many potential data sources, but
data need to be sourced with care. Quality
and veracity, even of government data sets, is
subject to variation.

to assess the outputs and frame the requisite
actions as a result.

With climate-driven catastrophes on the
rise across different parts of our planet,
communities and businesses may be more
amenable to using such a proactive risk
mitigation tool.
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USE CASE: Building attribute prediction in
hazard modelling: Using machine learning
to classify residential buildings for hazard
mitigation and disaster response

Mike DePue

Ricky Passarelli

Description: AtkinsRéalis developed an ML
approach using aerial photography to classify
building attributes for residential structures

in Puerto Rico and the US Virgin Islands. This
initiative supports the Federal Emergency
Management Agency (FEMA) in creating a detailed
building inventory to be used in Hazus, a software
for hazard mitigation planning and disaster
response analytics. The project employed two
methodologies: a boosted regression tree model
(BRTM) and a convolutional neural network (CNN),
which were trained using remotely gathered aerial
imagery and building-footprint data.

Why it matters: This innovative approach allows
FEMA to maintain a highly accurate and scalable
building inventory that is essential for hazard
modelling and disaster planning. By achieving
accuracy levels comparable to manual surveys
(80-90 per cent), the ML model saves significant
time and resources, making it possible to assess
entire building inventories efficiently. This scalable
solution enables better disaster preparedness and
more-accurate risk assessments, ultimately helping
protect lives and property during disasters.

Outlook: With the success of this model in Puerto
Rico and the US Virgin Islands, FEMA can expand
the technology to other regions, including the
mainland US. The ML model’s scalability and
accuracy demonstrate potential for broader use in
hazard mitigation efforts. Future advancements

in the methodology, along with improved data
sources, will continue to enhance FEMA's ability to
plan for and respond to disasters.

Best practices:

e Model selection: Combining different ML
techniques like BRTM and CNN improves
model accuracy and flexibility, depending on
the type of data and the desired outcome.

e Remote data gathering: Using aerial imagery
for data collection is both cost-effective and
scalable, allowing large areas to be assessed
without requiring manual surveys.

e Integration with existing systems: Integrating
the ML model’s output with FEMA’'s Hazus
software ensures that the results are
immediately applicable to hazard planning and
response analytics.
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Figure 16. Roof type predictions in Puerto Rico

Examples of correct metal roof predictions in Puerto
Rico
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Example of correct and incorrect predictions of roof type
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Lessons learned:

Scalability: ML models can match human accuracy
while being far more scalable, allowing for rapid
assessments of large building inventories without
manual labour.

Versatility of ML: Different ML approaches, such as
BRTM and CNN, can be combined to improve the
accuracy and robustness of predictions.

Support for expansion: The methodology is
adaptable and can be expanded beyond Puerto
Rico and the US Virgin Islands, offering FEMA the
opportunity to implement similar strategies across
the mainland US.
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USE CASE: Assessing hurricane damage with
machine learning: Predicting damage in flood
zones to optimize hurricane response and aid

Mike DePue

Ricky Passarelli

Description: Substantial Damage Estimates

(SDEs) help FEMA assess post-hurricane damage
and coordinate recovery efforts. Traditionally,
SDEs required door-to-door inspections, making
the process slow and labour-intensive. The
AtkinsRéalis team developed an ML model to
automate SDE generation by predicting which
structures in flood zones were likely to be
substantially damaged. This model used a small
sample of data from analytics, remote sensing and
field reconnaissance to make predictions across
larger areas, streamlining FEMA's recovery process.

Why it matters: This automated system drastically
reduced the need for manual inspections,
improving response times and focusing FEMA'’s
resources on the most affected areas. By cutting
down manual inspections to one-fifth of the total,
FEMA could direct recovery teams more efficiently
to help impacted communities rebuild faster.
Moreover, the model provided valuable insights into
the relationship between environmental factors
such as flooding and wind damage, informing
future disaster response strategies.

Outlook: The success of the ML model in Puerto
Rico and the US Virgin Islands during Hurricanes
Irma and Maria suggests that this technology can
be scaled to other disaster-prone areas. As ML and
data analytics continue to evolve, this approach
can be refined for greater accuracy and efficiency,
further reducing the burden of manual inspections.
There is also potential to expand its application

to other types of disasters, such as wildfires or
earthquakes.

Best practices:

e Data fusion: Combining remote sensing, field
data and analytics to train ML models creates
robust predictions. This approach leverages
multiple data types for greater accuracy.

e Selective inspections: Reducing the number of
on-the-ground inspections by focusing only
on high-risk areas saves time and resources,
allowing teams to respond faster.

e Collaboration: Close collaboration between Al/
ML experts and disaster response agencies
(e.g. FEMA) ensures that the technology is
aligned with real-world recovery needs.

Lessons learned:

e [Efficiency gains: Automating damage estimates
can drastically cut down on manual labour and
associated costs, as seen by FEMA saving
around $10 million in resources.

e Targeted resource allocation: Predictive
modelling helps agencies prioritize where
to deploy resources most effectively during
recovery efforts.

e Scalability: While highly effective for hurricanes,
the model can be adapted for other disaster
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scenarios, suggesting that Al/ML is a versatile
tool for future emergency management.

Figure 17. Dashboard of percentage damage predictions in San Juan, PR, using a version of the ML model
(125mph shown)

Source: People Data Technology
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3. Threats and
challenges of Al and
ML for DRR

The integration of Al technologies into DRR offers
significant advancements in risk and disaster
management. However, this integration also brings
forth critical challenges that need to be addressed.
One major concern is the lack of transparency in
decision-making processes, as many Al models
function as opaque “black boxes”, thus hindering
validation and explanation of results. Additionally,
ethical issues surrounding biases or obsolescence
in training data and over-reliance on technology are
key considerations.

As over-dependence on Al technologies could
lead to significant risks, traditional DRR methods
must be integrated with technological solutions to
avoid exclusively Al-driven strategies. Moreover,
there are environmental impacts to consider,

as the energy-intensive infrastructure required

for Al technologies (especially GAI) contributes
significantly to carbon footprints and climate
change. This calls for sustainable implementation
strategies to mitigate environmental effects.
Addressing underrepresentation in Al models

and safeguarding personal data against leakage
are also vital considerations. Lastly, the ethical
deployment of Al technologies, while being mindful
of cybersecurity risks, is imperative to ensure
equitable outcomes and minimize potential harm
to vulnerable communities. Overall, the successful
integration of Al technologies into DRR requires
careful navigation of ethical, technical and societal
implications to maximize benefits and minimize
risks.

3.1 Understanding the black-box and
white-box concepts

Castelvecchi (2016) highlighted the role of DL in
future radio astronomy observatories, noting that
these systems will be crucial in sifting through vast
amounts of data to identify meaningful signals.

He raised pertinent questions: How exactly does
the machine identify these signals? How can we
ensure the accuracy of its findings? These inquiries
underscore the importance of understanding

and trusting deep-learning processes in handling
complex data tasks.

Keeping these questions in mind, Al encompasses
two main model types: black-box and white-box
models. A black-box model’s internal workings are
not readily understandable. In contrast, a white-box
model, also called an interpretable model, provides
clear insights into its decision-making process,
making it easily understandable for the user.

Explainability: One of the issues with Al is that, as it
becomes more advanced and larger-scale, perhaps
incorporating billions of separate regression
analyses in the case of an LLM, humans struggle
to explain the output — exactly why the algorithm
has produced a particular result. This “black-box”
quality makes it hard to check for accuracy and
freedom from bias or hallucination and ensure
consistency and appropriateness in its output;

it reduces accountability and impacts audibility,
for example, to verify regulatory compliance.
Consequently, it imposes major limitations on the
extent to which Al can or should be trusted.
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The set of techniques designed to address this
issue is referred to as explainable Al (XAl).%° They
consist of:

e Checks for prediction accuracy: Checking to
see how well, given the data, the Al would
have explained known past events or trends
(part of the implementation process), and
then continuously checking for fit with actual
outcomes over time to detect drift or bias,
or emergent issues, for example when using
the Al in novel circumstances. One technique
for this is local interpretable model-agnostic
explanations (LIME),"® which show human
users which features (variables) in the Al had
the biggest impact on any specific conclusion.

e Traceability: With neural networks, tracing the
links between each neuron and scoring its
contribution to the final output. A technique
for this is Deep Learning Important FeaTures
(DeepLIFT)." This approach becomes more
and more resource intensive as neural nets
grow in size, and it can only be implemented
retrospectively — by which time the Al may
already have induced critical errors on the part
of disaster managers.

e Careful scrutiny and review of the data used
to train the Al: Are the data representative of
the populations affected, the problems being
addressed and the circumstances likely to be
encountered? Are the data current? And so
on. Reviewing test outcomes with affected
populations for factors including completeness
and acceptability.

e Education: For the team working with the Al so
that its strengths and potential weaknesses are
fully understood.

For now, it may be necessary to place limits on

the deployment of Al technologies, especially GAI
and AAl, in situations where rapid decisions are
being made for instant action. Given the propensity
of some Al technologies to hallucinate (see
below), it would be prudent (for now) to use them
in situations where there will be time to review
their output before it is acted upon. Examples of
safer use cases include the generation of training
scenarios or inputs to logistics planning in advance
of, say, a hurricane or wildfire season.

Privacy: Al will often be designed to enable
connections between different data sets and items
of data within them. For this reason, Al-powered
marketing tools, for example, may be seen by
some as an invasion of privacy. They allow detailed
pieces of personally identifiable information (PII)
about an individual - including aspects of their

life they might prefer to keep private — to be linked
together, forming a profile that could be used for
purposes without the individual’'s consent. This
has always been a problem with IT systems, but
through its power, Al exacerbates it significantly.

Al for DRR is no different. For example, if we take
the hypothetical example of an Al designed to
assemble data on survivors of a disaster for the
purpose of assessing who may need which kind of
help, this may require data on their age, address,
job, family, marital and welfare status, health,
financial resources, and so on. As well-intentioned
as the tool might be, all of these data items present
significant privacy items in isolation, and together,

8  Not to be confused with the private company of the same name.

9 A good overview of XAl can be found at https://www.ibm.com/topics/explainable-ai#:~:text=Resources-, Take%20
the%20next%20step,created%20by%20machine%20learning%20algorithms.

10 See, for example https://c3.ai/glossary/data-science/lime-local-interpretable-model-agnostic-explanations/.

11 See, for example https://arxiv.org/abs/1704.02685.
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they compound one another. The Al might then be
rejected by the population it is intended to help.

The underlying problem goes well beyond Al,
however. Effective DRR and privacy may be
fundamentally at odds with each other. DRR may
require specific knowledge of individuals in a
specific area, to enable priorities to be determined,
or resources to be allocated. Privacy, by definition,
requires the opposite —that those individuals
should be able to remain anonymous, and their
circumstances known only to whom they choose.
Resolving this tension requires a societal view in
each country of where the boundaries should lie
and, quite possibly, legislation to instantiate this
view, which Al cannot hope to provide.

However, once these boundaries are clear, those
developing Al for DRR need to take a number

of steps to ensure the tools stay within those
boundaries:

e Carefully review all definitions of the data
items, individually and collectively, that
the system will use for privacy (and legal)
implications.

e Consider alternatives to personally identifiable
information; will anonymized data suffice?

e At a minimum, consult with stakeholders to
explain the intended usage and demonstrating
the value of having the data in question.

e Create credible safeguards against those data
being used for unauthorized purposes.

e Have a plan B: In the event that the plans
would overstep the boundary of social or legal
acceptability, how can the tool deliver the
required benefits another way?

3.2 System failures

As with any IT (or other) system, sensing,
communications or processing equipment in Al
systems may fail, causing a loss of service. This
could be particularly problematic when the Al is
being used in responding to an actual disaster, and
when rapid decision support is required. In many
cases, this undesirable outcome will be obvious to
the user, who can then switch to whatever back-up
system exists. However, in some cases, such as
when an input data source fails — such as a data
stream from a sensor — the system may continue
to operate as if everything is normal, while actually
producing distorted results.

The solutions to this issue are the same as for
other IT systems:

e Redundant systems and Al-independent
backups: Ensure duplicated processors,
data sources and communication links for
continuous operation. Back-up systems should
be physically remote to prevent simultaneous
failures, and contingency plans should allow
manual decision-making and conventional
forecasting methods when Al is unavailable.

e Specify service levels required from vendors
and incorporating proof of these into
procurement processes.

e For highly critical systems, perhaps borrow
from the approach for high-assurance systems
such as air traffic control, incorporating a
Failure Modes, Effects and Criticality Analysis
(FMECA) stage into the design process,
systematically identifying and designing to
eliminate the risk of high criticality failures.
These risks will include those inherent in the Al
itself (see below).

e “Human-in-the-loop” disaster response and
alternative protocols: Establish manual
override mechanisms, human decision
checkpoints, and training programmes to
ensure emergency teams can effectively
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operate without Al assistance when necessary.
Al should enhance, not replace, human expertise
in disaster scenarios.

3.3 Cyberattacks

Cyberattacks include tampering designed to steal
data, distort the system’s output in some way,
deny access or cause physical damage to it and
any assets to which it may be linked. They may
be carried out by “hobbyists”, criminal gangs or
state actors. With Al, there may also be scope to
manipulate input data, causing the Al to respond
erroneously in some way.

As with system failures, the solutions to
cyberattacks are the same as for other forms of IT:

e Effective management of passwords, vigilance
for phishing attacks.

e An effective “skin” — firewalls, frequent
penetration testing.

e An effective “immune system” - tools
(themselves often Al-powered) that can
detect anomalies in any part of the system
and rapidly isolate that part. These tools can
also detect anomalies that indicate failing
equipment or human errors, such as an operator
misconfiguring a control or a technician failing to
register a new device connected to the network.

e Systematic deployment of all updates issued by
vendors.

| Artificial intelligence, machine learning and disaster risk reduction

3.4 Bias

Al has unfortunately gained notoriety due to
instances of bias, whereby it generates inaccurate
answers or predictions when applied to specific
situations or produces skewed outcomes. Some
recent examples, many related to race and gender
bias, include:

e mortgage algorithms that perpetuate racial bias
in lending'

e recruitment algorithms that exacerbate bias
against women'

e an application to predict clinical risk that was
shown to perpetuate certain racial myths and
biases in medicine.™

The review titled “Common pitfalls and
recommendations for using machine learning to
detect and prognosticate for Covid-19 using chest
radiographs and CT scans” by Roberts et al. (2021)
evaluated 62 studies. It found that both small and
large data sets used in ML for COVID-19 detection
have biases that can make the models unreliable and
lead to unequal healthcare outcomes. For example,
one major bias is found in small data sets, which
often fail to capture the full variability of the target
population, leading to models that do not generalize
well. This results in biased predictions that reflect
the limited scope of the training data rather than
the broader population. The study also noted biases
in the selection and measurement of features

and outcomes used by the models, making them
inaccurate. A further source of bias may simply be
the accidental use of obsolete data. Many studies
have yet to externally validate their models, which
can make them less reliable in real-world scenarios,
especially for high-stakes situations such as
COVID-19 detection and prognosis.

12  See https://news.berkeley.edu/2018/11/13/mortgage-algorithms-perpetuate-racial-bias-in-lending-study-finds.

13  See https://thenextweb.com/news/study-shows-how-ai-exacerbates-recruitment-bias-against-women.

14  See https://www.nejm.org/doi/pdf/10.1056/NEJMms2004740.
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The impact of bias in Al goes beyond fairness and
equity; it can also result in significant technical
failures. A notable example is Zillo,">'¢ an online real
estate marketplace that suffered major losses due
to its Al algorithms overestimating the future value
of properties. The algorithms failed to consider the
impact of the cooling housing market during the
COVID-19 pandemic and the increased time needed
to renovate and “flip” properties due to a shortage
of contractors. This bias, which stemmed from the
assumption that past trends would continue and
illustrated systemic bias in its predictive models,
came close to destroying the company.

In the DRR environment, bias can significantly impact
risk assessments, disaster response strategies and
recovery planning. One critical concern is the use

of ML models trained on data sets primarily from
data-rich regions, such as developed countries,
which may not generalize well to data-scarce
regions. Damage detection models, for instance,
often rely on high-resolution satellite imagery and
extensive post-disaster data sets that are more
readily available in certain countries. When these
models are applied to regions with different building
typologies, construction materials or urban layouts,
they may fail to detect damage accurately, leading to
misallocation of resources and ineffective response
efforts.

Similarly, bias can emerge in the development
of exposure models, where training data may
disproportionately represent urban, well-mapped
environments while underrepresenting rural or
informal settlements. This skews disaster risk
assessments, making them less effective for
vulnerable populations. Building typologies are
another source of potential bias, as ML models
trained on structural data from earthquake-prone,
high-income regions may not properly assess
the vulnerabilities of buildings in lower-income,

tropical or flood-prone regions. If not accounted
for, such biases could lead to underestimation
or overestimation of risk, ultimately affecting
preparedness and mitigation efforts.

Ensuring unbiased and contextually relevant Al
models in DRR requires diverse, representative data
sets, continual validation, and collaboration with
local stakeholders to capture regional differences.
Addressing these biases will improve disaster
response equity, resource allocation, and the overall
effectiveness of Al-driven DRR strategies.

Good bias versus bad bias: Oliveira et al. (2021)
researched biased resampling strategies for
imbalanced spatio-temporal forecasting tasks.
They focused on predicting extreme and rare
events, such as abnormal weather conditions and
pollution spikes, and tested their algorithms using:
a) multivariate adaptive regression splines; b)
Random Forest; and c) regression tree algorithms.
The study’s results showed that standard random
resampling methods without accounting for biases
often led to inaccurate predictions. This resulted in
underestimating or overestimating the frequency
and intensity of extreme events, which could cause
severe technical failures, such as inadequate
disaster preparedness or misallocating resources in
response to “false positives”.

By introducing biased resampling strategies, the
researchers were able to address these issues. The
biased methods prioritized data points that were
more relevant for forecasting rare occurrences,
enhancing the model’s ability to predict extreme
values accurately. This improvement in predictive
performance ensured that forecasts were more
reliable, reducing the risk of significant errors

and improving overall disaster response and
management strategies.

15 See https://kesq.com/money/cnn-social-media-technology/2021/11/09/zillows-home-buying-debacle-shows-how-

hard-it-is-to-use-ai-to-value-real-estate-2/.

16 See https://www.deeplearning.ai/the-batch/price-prediction-turns-perilous/
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Understanding biases in depth: Biases in Al can be
categorized into systemic, human and statistical
computational biases. Systemic bias arises when
the underlying assumptions and frameworks of the
Al model perpetuate existing inequalities or
inaccuracies in the system. Zillow’s systemic bias
was due to its reliance on historical data trends
without considering the dynamic nature of the
housing market. Data obsolescence is also a
systemic bias.

Human bias is
introduced by the
designers, trainers
and implementers
of Al systems.
This occurs when
training data reflect
unconscious
assumptions

or prejudices,
leading to skewed
learning and
biased outcomes.
For example,

if a disaster
prediction model is trained mainly on data from
wealthier urban areas, it may fail to account for
vulnerabilities in informal settlements, where
construction quality and infrastructure differ
significantly. The building damage assessment
using a hierarchical transformer architecture
(DAHITrA) for Hurricane Ida illustrates this
challenge. The model was trained using high-
resolution satellite images from well-mapped urban
regions but may have underperformed in low-
income, informal settlements due to less-detailed
training data. This highlights a common human
bias in Al for DRR, where models built in data-rich
environments do not generalize well to data-poor
regions. Addressing this bias requires incorporating
diverse data sets, collaborating with local experts
and continuously refining training data to capture a
broader range of disaster impacts.

Human Biases

Systematic Biases

Similarly, the zoning of vulnerability to wildfires
using fuzzy logic in Colombia faced challenges

related to human bias in model design. The
classification of wildfire-prone areas prioritized
vegetation type and land cover but underestimated
the impact of human activities such as illegal land
clearing or agricultural burning. This bias resulted
from the model designers’ implicit assumptions
about which factors drive wildfires, reinforcing

a biased interpretation of risk. Future iterations
should incorporate data on human interventions,
such as land management practices, to improve
prediction accuracy.

Statistical computational bias arises when Al
models are trained on limited data sets or when
the methods used for data processing introduce
errors. This can occur if training data sets fail to
cover all possible scenarios, leading to overfitting,
whereby an Al model performs well on training data
but poorly in real-world situations. Zillow’s failure to
predict housing market shifts is an example of this
issue, as its Al over-relied on past patterns that did
not account for emerging market conditions.

A similar challenge exists in Al-driven flood
prediction models, such as MaxFloodCast,

which integrates physics-based hydrodynamic
simulations with ML. While the model achieved
high accuracy in Harris County, Texas, its
applicability to Latin American regions with
different hydrological conditions remains
uncertain. If the training data set primarily included
flood scenarios from North America, the model
might struggle with flooding patterns in tropical or
mountainous regions. To reduce statistical bias, Al
models should incorporate diverse environmental
data, allowing for greater adaptability across
geographical contexts.

In addition, biases can also arise in how data are
visualized to inform decision-making. If certain
facts are highlighted while others are downplayed
or excluded, it can skew conclusions and lead to
erroneous decisions. These issues highlight the
importance of addressing all three types of bias to
develop fair and reliable Al systems for DRR.
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By understanding and mitigating systemic, human
and statistical computational biases, Al technology
experts can create more robust, accurate and
equitable models, preventing the kinds of technical
and economic failures experienced by Zillow. Some
methods for doing this are outlined below.

In conclusion, the responsible adoption of Al and ML
in DRR requires a constant assessment of risks and
the implementation of adequate safeguards. If we
manage to address and mitigate these challenges,
these technologies can be powerful allies in
protecting lives and reducing the impact of disasters
associated with the natural physical and the built
physical.

Best practices for handling Al biases in the DRR
domain: Solving bias issues in Al used for DRR may
not only rectify the immediate problem, but may
also potentially reverse the effects of unconscious
social/historical biases that would have led to it in
the first place. Techniques for doing this include the
following:"”

e Using existing technical tools and methods, such
as Red team reviews or audits.

e Rigorous testing of each system module in
isolation and then together.

e Using multiple metrics: user surveys, false
positives, false negatives, and so on.

e Rigorous characterization of, and quality
assurance (QA) on, the data used for training,
such as confirmation of the data’s age,
provenance, limitations etc.

e Sampling the raw data and training data for
missing values, any evident skews by age, sex,
ethnicity, region, ecotone, risk, disaster type, etc.

USE OF TECHNOLOGY FOR DISASTER RISK REDUCTION

e Continually monitoring any difference between
training data outcomes and in-use outcomes.

e For supervised learning, reviewing the neutrality
of the labels used to classify data.

e Communicating the limitations of the training
data to users: what was/was not included?

e Testing the Al with counterfactual examples™
to assess fairness according to whether results
affecting one population would be the same if
another population were in the same situation.

e Imagining that Al tool outputs were a piece
of proposed legislation and asking: who
would object to it and why? Should the tool’s
conclusions, therefore, be adjusted in some
way?

e Addressing the explainability of the Al's output
(see below), as XAl technology increasingly
allows, so that it does not appear arbitrary and
does not cause unnecessary surprises.

e Comparing Al outputs alongside those a human
has generated.

e Continuous monitoring after deployment,
especially if subsequent learning is expected; in
effect, the testing phase should never stop.

e Ensuring there is a “human in the loop” before
activating a process or asset as a result of the
Al’s operation.

3.5 Hallucinations

Al hallucinations are errors that occur in LLMs
and, thus, in GAI/AAI. These errors cause the Al

17 This list has been assembled from https://ai.google/responsibility/responsible-ai-practices/ and https://hbr.

org/2019/10/what-do-we-do-about-the-biases-in-ai

18 See https://papers.nips.cc/paper_files/paper/2017/hash/a486cd07e4ac3d270571622f4f316ec5-Abstract.html.
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to perceive patterns that do not exist, leading

it to produce an output that may appear

realistic but contains factual errors or complete
nonsense (GAl); or to take actions that may be
counterproductive or even dangerous (AAl). While
Al hallucinations can sometimes be seen as a
source of creativity in fields such as art and design,
they are not desirable in the context of DRR (Bender
et al., 2021; Marcus and Davis, 2019).

In the domain of DRR, the importance of
addressing Al hallucinations cannot be overstated.
Al systems are increasingly leveraged for
predicting natural disasters, assessing risks

and coordinating response efforts. However, Al
hallucinations pose significant dangers in this
context. They can lead to the generation of false
information about disaster scenarios, resulting in
incorrect decisions by emergency responders and
causing delays and misallocation of resources,
thereby exacerbating the situation (Vinuesa et al.,
2020). Moreover, erroneous patterns identified by
Al can trigger false alarms or missed warnings,
which can either induce unnecessary panic or leave
communities unprepared for impending disasters
(Amodei et al., 2016). Additionally, frequent Al
hallucinations can erode trust in Al systems among
stakeholders, including government agencies, first
responders and the public. This erosion of trust
undermines the effective implementation of Al-
driven DRR strategies, highlighting the critical need
for robust measures to mitigate Al hallucinations
(Taddeo and Floridi, 2018).

Hallucinations arise from the same sources as
bias — skewed or obsolete input data, overfitting
to training data and, increasingly, from the

sheer complexity of LLMs (see appendix 1). The
solutions are similar to those for dealing with bias,
notably using appropriate and complete training
data, continuous testing and human oversight
(Mitchell et al., 2019). As stated, using GAl and
AAl in situations where there cannot be a human
in the loop should be avoided. It may also make
sense to define constraints that limit the content or
actions that the Al may generate as output, similar
to how publicly available LLMs such as ChatGPT

are constrained from reproducing profanity or
offensive images (OpenAl, 2023).

Note: It is important to emphasize that
hallucinations primarily occur in GAl under DL,
affecting text and image generation (Bender

et al.,, 2021). This issue does not apply to all Al
systems, and understanding this distinction is
crucial for effectively managing and mitigating the
risks associated with Al hallucinations in various
applications (Marcus and Davis, 2019).

4. Summary and
conclusion

In this paper, we emphasized the potential of Al
technologies in disaster risk reduction (DRR),
highlighting the importance of high-quality data
and pre-processing. We stressed the significance
of community engagement for successful
implementation, as it fosters trust and acceptance.
We also discussed the need for explainable Al (XAl)
to improve transparency and trust in Al systems
and emphasized the importance of ensuring
system reliability.

However, Al deployment in DRR remains
challenging, particularly in the Americas and

the Caribbean. Climate-induced disasters such

as hurricanes, floods and wildfires continue to
intensify, making real-time Al-driven insights
crucial. Nevertheless, uneven technological
access, data scarcity and the high cost of Al
implementation hinder widespread adoption in
many developing nations. Additionally, biases

in Al models could disproportionately affect
vulnerable communities, leading to misinformed
decision-making. For example, the application of
ML for mass movement susceptibility mapping in
Colombia highlighted the importance of local data
availability for Al-driven landslide risk assessment,
and also revealed significant gaps in historical
event records that limit predictive accuracy.
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Similarly, the zoning of vulnerability to wildfires
using fuzzy logic and Al in Colombia demonstrated
that while high-resolution satellite imagery

can improve risk mapping, limited access to
computational resources and cloud-based Al tools
in some areas remains a barrier to implementation.
In Bolivia, the use of Google Earth Engine and
Random Forest for land-cover classification
showcased the potential of Al for environmental
monitoring, yet emphasized how the lack of
consistent, region-specific training data sets can
reduce model accuracy when applied to different
ecosystems. These cases underline the broader
issue of Al models trained on data sets from high-
income regions failing to generalize effectively in
Latin America.

To address these challenges, future research
should focus on developing localized Al models
tailored to regional hazards and socioeconomic
conditions, while ensuring that Al solutions are
accessible and interpretable for policymakers and
emergency responders. Expanding regional data-
sharing frameworks, improving computational
infrastructure and fostering cross-border
collaboration between research institutions

can enhance the effectiveness of Al in DRR.
Furthermore, strengthening explainable Al (XAl)
efforts will be crucial to ensuring that decision
makers in Latin America trust and act upon Al-
driven recommendations, avoiding misapplications
that could worsen disaster outcomes. By
proactively tackling these barriers, Al-driven DRR
initiatives can become more inclusive, adaptive and
impactful, ultimately strengthening the resilience
of communities across the Americas and the
Caribbean.

USE OF TECHNOLOGY FOR DISASTER RISK REDUCTION
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Appendix 1: Al methods™

Al method

Description

Learning
method

Example data
sets

| Artificial intelligence, machine learning and disaster risk reduction

Examples of use in
DRR

Machine
learning (ML)

Uses data and algorithms to
gradually improve performance
of a computer system at
predicting outcomes by
correcting in the light of
observed errors without being
explicitly programmed.

Some ML methods that may be
encountered include:

Linear regression: Finds the
best fit between variables and
predicts values based on the fit
identified.

Supervised
(uses manually
labelled data)

Bayesian inference:
Continuously updates assessed
probabilities of events or
parameters in light of new
evidence.

Supervised or
unsupervised
(can use
unlabelled data
and discover

for itself)
Decision tree: For classification Supervised
of data types and/or
regression/prediction.
Random Forest: Combines the Supervised
output of multiple decision
trees that may focus on
different areas of the data.
Support vector machines Supervised

(SVMs): Complex
classifications through finding
the largest gaps between data
points in multiple data sets.

Clustering: Infers similarity from
features and attributes, and
groups instances or items with
those similar features.

Unsupervised

e Sensor data

e Flood prediction
e Earthquake
magnitude

estimation

e Required actions

19 This appendix draws heavily on Cheng-Chun Lee, and others (2022). Roadmap towards responsible Al in crisis
resilience management. Available at arXiv:2207.09648v2 [cs.SI] 8 Sep 2022. Grateful thanks to the authors.
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Learning
method
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Example data
sets

Examples of use in

Artificial
neural
networks
(ANN)

A form of ML inspired by the
human brain, where “neurons”
are processing nodes, each
with their own weightings

that function like separate
regression models. Nodes are
arranged in layers: an input
layer and perhaps a “hidden”
layer, each partially processing
the problem before being
combined by the output layer.
“Learning” happens as weights
are changed in response to
observed performance. ANN is
often used as the foundation
for natural language processing
and computer vision (see
below).

There are three broad types:

Feed-forward (sometimes Supervised

called multilayer perceptrons):

The “classic” ANN.

Convolutional: These use matrix Supervised

multiplication, for example

to identify patterns within an

image or stream of data, and

thus what the image itself might

be or what the stream of data is

telling us.

Recurrent: Embody feedback Either

loops — often used for time supervised

series predictions. or semi-
supervised

(some data are
labelled but not
all)

e Mobile phone
activity data

e Digital trace
data

e Risk assessment

e Damage
monitoring

e Crowd and
migration
monitoring

e |Location mapping

e Mobility
evaluation

e Activity and
recovery
evaluation

Deep learning
(bL)

Neural networks using more
than one hidden layer (and as
many as hundreds) to ingest
structured or unstructured
data (images, text) and derive
conclusions and predictions.

May include any of the three
types of neural network
described above.

Usually
supervised

e As above — at
larger scale

e As above — at
larger scale
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Al method Description Learning Example data Examples of use in
method sets DRR
Natural Gives computers the ability Supervised, e Social media e Early warning
language to understand and respond semi- (text- or speech-
processing to text or spoken words. supervised and e Operating based
(NLP) Usually based on DL, and unsupervised, instructions
convolutional neural networks depending on e Situational
in particular, combined with ML the specific awareness
classification techniques such component —
as SVMs. NLP requires Infrastructure
a family of operation
techniques
Damage
monitoring
Sentiment
analysis: social
impact detection,
recovery
evaluation
Fake news
detection
Computer Gives computers the ability to Supervised, e Satellite and e Vegetation
vision derive useful information from semi- aerial images management

images, including pictures

and videos. As noted above,

it is usually powered by DL
convolutional neural networks.

supervised and
unsupervised,
depending on
the specific
component.
Computer
vision requires
a family of
techniques.

e CCTV

e Conventional
photography

Risk, exposure
and vulnerability
assessment

Damage
assessment

Recovery
evaluation
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Al method Description Learning Example data Examples of use in
method sets DRR
Large Very large DL recurrent neural Supervised, e LLMs could e Research
language networks that analyse massive semi- be created
models accumulations of data to supervised and for regions, e Generation of
(LLMs) and “predict” what each next word unsupervised, tasks or training scenarios
generative Al should be. (ChatGPT-4, a depending on industry
(GAI) well-known LLM, was trained the specific sectors. e Expert advice
on 45 gigabytes of data, for component on strategy and
example, and its eight linked priorities
neural networks with over
120 layers collectively have a
reported 1.76 trillion weights).
LLMs have moved beyond
traditional Al, which makes
predictions based on analysis
of historical data, to become
generative Al, i.e. producing
brand new outputs (text,
images, speech) that can be
difficult to distinguish from
human-created material.
Agentic Al As for GAI but producing As above e As above e Supply chain
(AAI) recommendations or actions. planning
Capable (if allowed) of
autonomous operation of e Triage

complex processes.

recommendations

Time series Al

A family of ML and neural
network techniques that
analyse historical or streaming
(i.e. contemporaneous)

time series data to forecast,
detect anomalies, recognize
temporal patterns and create
classifications based on these.

Unsupervised,
supervised
(e.g. to weed
out profanity

or abusive
material), semi-
supervised and
reinforcement.
Reinforcement
learning
mimics trial
and error as the
machine seeks
to optimize
results.

e Weather data

e River flow
data

e Forthcoming
weather or river
flow impacts —
early warning

e Required next
actions
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Technology availability, affordability and
accessibility, and data representation are critical

aspects of disaster risk reduction (DRR). Ensuring

data are properly represented and technology is

realistically available and accessible is essential to

reducing vulnerability in its multiple forms. Often,
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of the affected groups, which can lead to biased
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processes. This will help ensure accurate data
representation and reduce vulnerabilities.

As a concept, “technology” will be defined
differently depending on generations, geographies,
demographics and access conditions. It is
important to be expansive in how technology is
designed and contextualized. Regardless of the
type or design, technology can only effectively
reduce risk when there is a focus on its context and
usability.
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1. Introduction

Addressing disaster risk reduction (DRR) requires

a nuanced exploration of technology access and
data representation. This chapter embarks on an
intellectual journey, embracing diverse perspectives
on technology and recognizing that different
definitions foster inclusivity. For instance, an
expansive conceptualization of technology that
includes Indigenous technologies, which may differ
from Internet- or data-dependent technologies, can
broaden our understanding and approaches.

The chapter considers how context and usability
can emerge as guiding principles in DRR,
underlining that effectiveness of technology in

DRR depends on its alignment with specific needs
and circumstances. This understanding becomes
crucial in crafting adaptive and sustainable
solutions tailored to the unique challenges faced by
communities in the Americas and the Caribbean.
Through this comprehensive exploration,

the authors aim to contribute to the ongoing
discussion within the DRR community and engage
a broader audience interested in the intersection of
technology, inclusion and DRR.

2. Inclusion and the
technology spectrum

The response to disasters and also to risk
reduction lies at the intersection of technology and
humanity. To achieve a true and tangible impact,

it is imperative to recognize the importance of
inclusion. The technologies employed in these
critical fields range from simple to sophisticated,
bridging gaps between different age groups,
cultures and levels of access to technology.
Understanding this spectrum is not just about
technological progress; it ensures that each
community, regardless of its unique characteristics,

can benefit from effective DRR strategies. Inclusion
must therefore be understood as a combination

of efforts to make the processes of designing and
validating proposed technologies participatory

to ensure they are socioculturally relevant and
adapted to diverse needs.

2.1 Non-technical solutions:
resilience through simplicity

Non-technical solutions, mostly based on simplicity
and traditional practices, are inherently inclusive.
They leverage local knowledge and community
networks, transcending generational and cultural
boundaries. The use of oral communication and
traditional construction techniques are accessible
to diverse communities, fostering resilience

across all age groups and cultural contexts.
Recognizing these systems as forms of technology
is important in emergencies, as they function
continuously, regardless of access to electricity or
other infrastructure requirements (Rea, 2022). For
Indigenous and local social groups, these systems
must be based on their fundamental institutional
entities, such as the collective (Esteva, 2012) and
their world view. This includes considering their
knowledge systems and ontological dimensions
(Viveiros de Castro 1998; Inglod, 2000).

For instance, learnings from the Indigenous
communities of the Americas and the Caribbean
have yielded important reflections on the role

that human beings play in relation to the Earth. A
large part of the planet’s biodiversity that is well
preserved or conserved is located on Indigenous
lands, whether or not they are demarcated as such.
Knowledge related to these lands and territories
results in a variety and diversity of fauna and flora,
at low financial cost, thus establishing a unique
socioenvironmental sustainability process.
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2.2 Low-tech solutions: practical and
accessible

Low-tech approaches are practical and accessible
to a wide range of users. Hand-crank radios, solar
chargers and manual water filtration systems serve
communities with varying levels of technological
sophistication. They provide everything from

early warnings to potable water during and after
emergencies. Information itself can be a low-
tech solution. For example, a lesson learned from
the Great Japan Earthquake of March 2011 was
that both communities and emergency services
needed good information about shelter needs

and the availability of facilities (Murayama,

Scholl and Velev, 2021). These low-tech solutions
are designed to empower people of all ages,
backgrounds and abilities, ensuring disaster
preparedness is not limited by technological
disparities. The principles of equity, reciprocity
and pluriversal complementarity (Escobar, 2018)
should guide access to, and the creation of, new
technologies.

2.3 High-tech solutions: robustness
and efficiency

When high-tech solutions such as satellite
imagery, drones, early warning systems (EWS)
and artificial intelligence (Al) are integrated into
disaster response, they have the potential to
accelerate positive outcomes. The use of these
and other technologies in emergencies has led
to improvements in wildfire prediction, efficiency
in resource allocation, event monitoring and the
ability to anticipate recovery costs (Vermiglio

et al., 2022). However, while technological
advancements have revolutionized disaster

risk management, their effectiveness depends
on inclusivity, accessibility and affordability —
particularly in developing regions where digital
divides persist (Enigma Advisory, 2024). Ensuring
that disaster technologies are designed with

the needs of diverse communities in mind is
essential to fostering equitable resilience. Many
at-risk communities face barriers such as digital

illiteracy, inadequate infrastructure and high costs,
which hinder the widespread adoption of disaster
management tools (Cawley and McEntire, 2024).
To bridge these gaps, disaster technologies must
be co-developed with end users, ensuring that their
perspectives shape design and implementation.

Both technological advancements and local
resilience strategies should be incorporated

into this co-design to ensure accessibility. Many
communities have developed risk knowledge
systems based on lived experience, using adaptive
responses to climate events for centuries (Sillitoe,
2017). Recognizing and incorporating these
systems into modern technologies ensures that
disaster preparedness is not only data-driven but
also culturally and socially relevant. An example
of this is a scenario that incorporates traditional
EWS alongside Al-driven models to create hybrid
approaches that reflect local realities (Sillitoe,
2017).

A final challenge to address relates to affordability.
Advanced and cutting-edge technologies are often
prohibitively expensive, restricting their use to well-
resourced organizations and leaving marginalized
communities behind (Brown, Smith and Lee, 2024).
Governments, humanitarian organizations and
private sector partners must work towards cost-
effective solutions that enable broad adoption.
Open-source platforms, mobile-based alerts

and simplified digital tools are examples of
solutions that can help extend access to high-tech
approaches while reducing financial burdens on
resource-limited communities (Enigma Advisory,
2024).

2.4 Intergenerational use,
opportunities, and deficits in access

Technology utilization also varies significantly
across generations, reflecting divergent
approaches, priorities and resource access. At
the forefront of this discussion is the evolution of
digital platforms and communication channels.
From the older generation’s early adoption of
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online forums to millennials and Gen Z's seamless
integration of social media platforms such as
Facebook and X, generational gaps in technological
engagement echo throughout DRR. While some
people rely on traditional communication methods
during and after disasters, others harness the real-
time dissemination capabilities of social media and
messaging apps to coordinate relief efforts and
disseminate critical information in near-real-time.
Exploring generational differences in technology
use for DRR requires reviewing the concept of
resilience, where age, culture and socioeconomic
factors shape the collective response to natural
hazards.

For those who take on the task of reflecting

on DRR actions and projects, developing a
conceptualization that is appropriate to the context,
or intended object, is one of today’s biggest
challenges. Doing so implies not only reflecting

on methods and processes for conceptual
construction in the scientific, technological

and communicational domains, but also often
reconstructing analysed concepts. A critical
content analysis always points out issues that
generate instability in established systems;
proposing conceptual or systemic solutions for
them will always require a lot of effort (combined
with specialized skills) from the analyst. DRR is a
socially constructed concept that examines the
relationship established between subjects, and
between subjects and objects, in a given context to
achieve real and concrete resilience.

3. Holistic integration:
the power of synergy

Holistic integration, combining non-technical, low-
tech and high-tech solutions, embodies the spirit
of inclusion in technology and DRR. Understanding
and adopting this spectrum ensures disaster
response and risk reduction strategies meet

the diverse needs of communities worldwide.

Understanding the importance of age, culture
and accessibility is an important component

of building resilient communities, regardless of
the technological landscape surrounding them.
Inclusion becomes not just an objective but a
fundamental principle that guides our approach
to safeguarding lives and enhancing community
resilience during crises.

3.7 Indigenous knowledge or
technology?

To examine the relationship between culture and
technology, we must first articulate the differences
between them. Cultural models cannot be analysed
in the same way as technological characteristics.
Culture is superstructural, whereas technology

is based on a set of organic and inorganic
mechanical elements to achieve an objective.

It is imperative to analyse where culture and
technology intersect in order to help understand
the instrumental use of technology. This can be
understood as a kind of ontological invention,
based on the development of new technologies
such as Al. This suggests paying attention to the
ways of thinking that have maintained the forms of
socialization between culture and nature over time
and space, in order to understand their behaviours.
It is about defining meanings to find interpretive
patterns in the culture—nature relationship or, more
concretely, the relationship between technology
and climate phenomena. The problem lies in

the biases of science regarding the Indigenous
perspective of knowledge in its interpretive models.
For example, Western science does not accept
that the world of humans and non-humans, as

well as the natural and the supernatural, coexist
interdependently.

From the Indigenous perspective, technology is key
to recalibrating the balance between culture and
nature. In the Western world, culture and nature are
two separate elements, but in the Indigenous world
they are united. The Indigenous position prioritizes
that all new technology must be truly inclusive

and participatory. Indigenous communities expect
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that new technology will not only contribute to
developing resilient mechanisms to improve DRR
but will also help restore balance in the human-
nature relationship. The new technology should

go beyond dualistic analyses, eliminating the
opposition between modernity/tradition, science/
belief and so forth to recognize a culturally diverse
world (Ashish et al., eds., 2019).

The current scientific method has shown
limitations in understanding Indigenous knowledge,
but should not ignore it. Indigenous knowledge
about the territories has allowed Indigenous
communities to develop and accumulate true and
legitimate learnings that have enabled them to
keep their territories in balance through creative
processes. These processes are the repository of
non-systematized Indigenous technologies used to
reduce the risks and disasters of climate change
that now threaten Indigenous territories.

Three hundred years before the arrival of the
Europeans to the Americas, one of the largest
civilizations in the world, the Incas, was formed in
the Andean mountains. Living at over 3,000 metres
of altitude, the Incas cultivated their crops on these
lands. According to palaeoecological studies, there
was a period of global warming (Chepstow-Lusty et
al., 2009) from around 1,100 A.D. that lasted about
four centuries. During this period, the populations
of the Andes moved up the mountains in search of
lower temperatures and developed a sophisticated
agricultural production system using meltwater
managed by irrigation systems to cultivate terraced
lands. Combined with tree plantations and forest
conservation, this formed a traditional knowledge
system that has been transmitted from generation
to generation. This knowledge is now being reused
in a mitigation and resilience plan for climate
events affecting the Andean mountain range that
have increased in frequency and/or intensity due
to the effects of climate change, in an area where
glacier coverage has retreated to 51 per cent of its
original area.

At the foot of the glaciers of the Sacred Valley of
the Incas live Quechua Indigenous communities.

Their ancestral knowledge is being drawn upon,
with the same technology applied over 400

years ago being put to use today. Large-scale
reforestation with native trees — such as Q'eufias
(polylepis), which are now nearly extinct in the
area - is understood as a crucial strategy for
human survival as they capture and store water.
Indigenous communities regard the cultivation of
these communal forests as a guarantee for their
future water and fuel needs and hope they will
restore the socioenvironmental balance.

Rather than treating Indigenous and traditional
knowledge as separate and subordinate, it is
imperative to examine its intersection with the
systemic whole. This perspective allows for

an understanding of the instrumental use of
technology, particularly emerging fields such as
Al. Within the broader cultural context, Al offers
an opportunity to integrate Indigenous knowledge
systems by recognizing the ways of thinking

that have sustained the relationship between
human communities and natural ecosystems over
time. For instance, Indigenous fire management
practices, which emphasize the use of controlled
burns to prevent larger wildfires, can inform Al
models that aim to assess wildfire risk and guide
DRR strategies.

New technology must be designed with an
understanding of traditional knowledge and
incorporate it into the information management
system equitably and inclusively. A pluriversal
and holistic perspective is fundamental. Both
science-based and ancestral knowledge can
contribute to innovation by integrating into new
formulas for technology development, which will
be truly inclusive as long as it is participatory

in both theory and practice. Understanding the
forms of environmental adaptability in various
global scenarios characterized by particular
and differentiated cultural processes should
lead to identifying patterns of similarity that can
be universally adapted. A new way of thinking

in science is evident: a post-normal science
(Funtowicz and Ravetz, 2018). The combination
of these approaches should open the door to
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accounting for non-traditional data sets — such as
oral histories, community narratives and ecological
signals — alongside conventional scientific data.
This requires developing data structures that

can encode qualitative insights and cultural
epistemologies while ensuring that the technology
remains accountable to the communities it seeks
to serve.

3.2 Who's at the (tech) table?

As climate change highlights the need for
comprehensive disaster response plans,
discussions of which technologies are included,
and their origins, become increasingly important.
Indigenous technologies, often deprioritized

by policymakers despite their histories of
effectiveness, must be deliberately included to
ensure equity in emergency management policy
and maximize potential environmental and
community benefits (Takako et al., 2019).

One example highlighting the efficacy of a broad
definition of technology in disaster resiliency

is seen within the Kalinago and Garifuna
communities of Dominica and Saint Vincent, where
traditional knowledge about hurricane and volcano
preparedness is routinely used (Hofman et al.,
2021). Adaptive housing practices, EWS and sea
level rise mitigation technologies found in these
communities exemplify how expanding the policy
definition of technology can serve Latin America
and the Caribbean. Adopting this traditional
knowledge in future reports and technical assistance projects
can produce comprehensive plans to implement
the Sendai Framework for Disaster Risk Reduction
2015-2030 (Sendai Framework).

When this broader definition of technology is
achieved and implemented, people throughout
Latin America and the Caribbean can participate
more actively in building their resilience and
contributing to collective disaster preparedness
and response efforts. This inclusion allows them

to see their histories of technological development
reflected in DRR policies, resulting in more inclusive

and effective climate change adaptation for the
region.

4. Technology for
DRR and inclusion of
people on the move

Migration has been, and always will be, a strategy
for building resilience and coping with shocks,
including adapting to environmental change. With
the number of international migrants estimated

at nearly 281 million globally (IOM, 2024), more
people are on the move than ever before. Globally,
more than 108 million people are forcibly displaced
by conflict, violence, human rights violations

and disasters (UNHCR, 2022). An average of

25.3 million new displacements by disasters

each year were recorded between 2008 and

2022 (Internal Displacement Monitoring Centre,
n.d.), three times higher than those displaced by
conflict and violence. Hazardous events, amplified
by compound risk factors such as ecosystem
degradation, climate change, conflict, epidemics
and pandemics, water scarcity, unregulated
urbanization, and underlying conditions such as
weak governance, corruption and violence (Daher,
Pappas and Lavell, 2023), are expected to increase
displacement, compelling millions more to migrate
within and across borders (I0M, 2023).

Worldwide, migrants, asylum-seekers and refugees
are more vulnerable in the face of disasters, facing
specific conditions of marginalization. Migrants
often fall between the cracks of existing protection
mechanisms and are not always considered in
crisis preparedness and emergency response
frameworks and programmes, despite facing
vulnerabilities beyond those faced by citizens of

a country experiencing a crisis. Limited access

to critical and timely information — due to factors
such as limited language proficiency and local
knowledge, social and spatial isolation, and the
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host society’s political and cultural stances towards
migration and migrants — makes it challenging for
migrants to access adequate services, resources
and opportunities. They often face attacks and
discrimination, restrictions on mobility, irregular
immigration status, confiscated or lost identity or
travel documents, and other factors hindering their
ability to ensure their safety and well-being. These
groups may also experience increased vulnerability
if their living conditions are below average (i.e.
refugee camps and/or marginal settings in
dangerous areas) or if they have poor health or low
education (IOM, n.d.a). These factors impact their
exposure to hazards and access to self-protection
and support options, increasing their vulnerability
to disasters.

Building on the growing international attention on
human mobility and the environment, the Sendai
Framework explicitly calls for the inclusion of
migrants in DRR policies and practices of their host
countries and communities. These efforts support
the 2030 Agenda for Sustainable Development
Goal of reducing inequality (Goal 10), including
facilitating safe, regular and orderly migration
through well-managed migration policies (Target
10.7). However, efforts to put this provision into
practice have been inconsistent. To strengthen
these efforts, the International Organization

for Migration (IOM) and the Council of Europe

have been working together to implement the

15 Guidelines to Protect Migrants in Countries
Experiencing Conflict or Natural Disaster. These
guidelines provide practical, non-binding, voluntary
guidance for states, private sector actors,
international organizations and civil society to raise
awareness of the need to include migrants in their
work and to equip them with technological tools,
relevant skills and knowledge for the preparedness,
emergency response and post-crisis phases (I0M,
n.d.a). As sudden- and slow-onset disasters are
expected to increase displacement, strengthening
disaster risk governance and prevention at all
levels has become urgent.

4.1 Climate risks, migration and
displacement in Latin America

Climate-, weather- and water-related extremes have
led to up to 15 times more fatalities than other
deadly hazards for people in Latin America (UNDRR
and WMO, 2023). Migrants, asylum-seekers and
refugees constitute a significant and growing

share of the general population of Latin America’s
vulnerable and least developed countries. These
countries are not significant contributors to the
climate crisis in terms of their equivalent CO?
emissions, but disproportionately bear the brunt of
its impacts.

In 2023, a total of approximately 2.8 million internal
displacements were recorded in the Americas and
the Caribbean. Disasters accounted for 2.1 million,
a similar figure to that of 2022, whereas conflict
and violence accounted for the remaining 637,000
(Internal Displacement Monitoring Centre, n.d.).
The region’s vulnerability to disasters (including
those intensified by the adverse effects of climate
change) intensifies other factors, including poverty,
inequality and food insecurity. Extreme weather
events, such as floods or hurricanes, can destroy
homes, infrastructure and agricultural production,
serving as the final push to migrate on top of
existing vulnerabilities and risk conditions.

A recent joint report from I0M and the World Food
Programme (WFP) determined that exposure

to natural hazards is significantly associated

with recent migration and a desire to migrate
permanently to another country, potentially
becoming a trigger for migration if disaster risk
increases (WFP and I0M, 2022). Food insecurity
is a long-standing problem and a large driver of
migration, especially in Guatemala, which has
high rates of chronic childhood malnutrition.
According to a joint report by the Migration Policy
Institute, WFP and the Massachusetts Institute

of Technology, food-insecure people in Northern
Central America are three times more likely to
make concrete plans to migrate than those who are
not food insecure (Ruiz Soto et al., 2021).
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5. Migrant inclusion in
disaster management

Migrants often bring unique skills and knowledge
from their home countries, such as expertise in
disaster-resistant construction methods. Their
fluency in other languages can be invaluable

for reaching isolated communities and their
participation can lead to culturally sensitive
approaches, helping design training materials that
resonate with their communities or identifying
trusted leaders who can effectively communicate
risk reduction messages. By involving migrants as
volunteers, DRR efforts can foster trust and build
bridges between migrant and host communities.
Essential parameters in this process include:

e Data collection: Conducting tailored risk
assessments that consider specific
vulnerabilities of migrant populations, such
as limited access to transportation, can
help develop targeted mitigation strategies
(UNISDR, 2014). Data-driven approaches
can optimize resource allocation, such as
mapping flood-prone areas with high migrant
populations or ensuring stockpiles include
culturally appropriate food items. Migrants can
contribute valuable insights through surveys
conducted in their preferred languages.
Partnering with migrant organizations can
facilitate fit-for-purpose and inclusive data
collection.

e Effective communication: Disseminating vital
information in multiple languages through
various channels, such as SMS, radio and
outreach through trusted community leaders,
ensures everyone receives critical warnings
and instructions on time. EWS play a crucial
role in this process by delivering clear, targeted
messages detailing the specific actions to
be taken. For instance, alerts should include
precise evacuation routes, shelter locations
and safety measures tailored to the needs of
different groups, such as childcare options

for single parents (WHO, 2017). Ensuring

that these messages are accessible and
understandable to all, including migrants,
makes EWS more effective and helps save
lives. Collaboration with migrant communities
to develop and test these messages can
further improve their relevance and impact.

Collaboration: Collaboration between civil
society, research institutions and local
authorities allows for joint training programmes
on cultural sensitivity and communication for
both migrants and DRR personnel (Adly, 2017).
Migrant organizations might possess unique
resources, such as translators and culturally
appropriate supplies, that can be shared with
other DRR actors. Collaboration strengthens
advocacy for migrant inclusion in policies and
funding allocation for DRR efforts.

Empowerment: Training programmes in
disaster preparedness, first aid and emergency
response skills can empower migrants to
protect themselves and their communities
(Rosenbaum and Long, 2018). Financial
assistance programmes can help migrants
improve their housing conditions or invest

in disaster preparedness and risk reduction
measures. A resilient community ensures
everyone has access to essential services such
as healthcare and social support.

Building trust: Ongoing collaboration with
migrant communities, engagement in
community events or social initiatives (Turin
et al., 2021), and respecting migrant rights,
such as avoiding immigration enforcement
during disasters, foster cooperation and
provide a sense of security. Culturally sensitive
communication using respectful and inclusive
language demonstrates respect for migrant
communities.

Combating stereotypes: Promoting stories
showcasing migrants’ contributions to

the community can challenge stereotypes
and encourage social inclusion. Advocacy



Inclusive technology: Bridging cultures and climate resilience | USE OF TECHNOLOGY FOR DISASTER RISK REDUCTION

campaigns can raise awareness among
policymakers and the public about the
importance of including migrants in DRR.
Collaborating with media outlets to portray
migrants as valued community members can
promote inclusive messaging and shift public
perceptions.

Including migrants in DRR includes activities
beyond disaster preparedness. When working
together on DRR, migrants and host communities
can build stronger relationships and a sense of
shared responsibility for safety, by fostering social
cohesion and reducing migrant marginalization.
This leads to a sense of belonging and benefits
everyone, promoting sustainable development
and creating a safer environment for all residents.
Harnessing migrants’ unique skills and knowledge
and building trust through inclusive practices

can strengthen communities, making them more
resilient and prepared for disasters.

5.1 Prospective areas of intervention
for DRR technologies and inclusion of
people on the move in Latin America

While the previous section highlighted the
importance of social and institutional changes
for migrant inclusion in DRR, technology can also
bridge the gap. Neglecting human mobility in DRR
technology creates blind spots, hinders response
efforts and leaves entire populations exposed and
vulnerable. This section summarizes prospective
technological advancements offering the potential
for inclusive DRR in Latin America. Addressing the
challenges faced by migrants and refugees, these
technologies can create a more prepared and
resilient society for all.

Multi-hazard early warning systems (MHEWS): Cost-
effective and reliable real-time monitoring systems
can issue alerts via SMS, radio broadcasts, mobile
apps, sirens and loudspeakers, among others,

with the aim of protecting lives and livelihoods
from different types of hazards, such as floods,
heatwaves, storms and tsunamis. The Global Status

of Multi-Hazard Early Warning Systems — based

on the Target G report in the Sendai Framework
Monitor (2022) - reveals that countries with
substantive-to-comprehensive early warnings
coverage have disaster mortality that is eight
times lower than countries with limited coverage.
According to the Global Commission on Adaptation
(2019), giving 24 hours’ notice of an impending
hazardous event can reduce damages and losses
by 30 per cent. Investing USS800 million in such
systems in developing countries would prevent
annual losses of $3 billion to $16 billion. Despite
the urgent need and the clear benefits, only half

of countries worldwide report having adequate
MHEWS. Even fewer have regulatory frameworks
connecting early warnings to emergency and
response plans. There are also gaps in the

global observing system required to generate
forecasts. By providing timely alerts and actionable
information to communities, the effectiveness and
reliability of EWS can be improved, enabling better
preparation and response to hazards.

Earth Observation Systems (EOS) and risk
mapping & monitoring: Satellite imagery and aerial
photography monitor land-cover changes, provide
valuable information for the development of
detailed maps of hazard zones, identify exposed
and vulnerable areas prone to landslides or
flooding, and track weather system development
(Mashala et al., 2023). These technologies guide
infrastructure development and evacuation
planning. Data can identify areas where migrants
might be stranded or require specific assistance.
LiDAR (light detection and ranging) technology
also offers high precision; however, it may be too
specific and costly for large-scale assessments.
Instead, combining satellite imagery with other
cost-effective remote sensing technologies

can provide comprehensive risk mapping and
monitoring, ensuring efficient resource allocation
and timely interventions.

Geographic information systems (GIS): GIS enable
digital maps to be created that integrate various
data layers such as hazard zones, infrastructure
locations, population density and vulnerable
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areas within communities, empowering migrants
to identify and share critical information. The
gathering and processing of all these input
parameters allow for better risk assessments,
evacuation planning and resource allocation.

For instance, Ecuador’s Ministry of Disaster Risk
Management uses GIS to map potential flood
zones and evacuation routes in coastal areas
(Ahasan et al., 2022).

Mobile phone technology: With nearly 75 per

cent of the world’s population owning a mobile
phone, mobile networks have become powerful
communication channels targeting at-risk areas.
While mobile broadband networks are widely
accessible, with 87 per cent of the population in
Latin America within range of a 4G signal, actual
usage and penetration rates can vary significantly.
Mobile apps, available in multiple languages,

can be used to disseminate critical disaster
preparedness information, evacuation plans and
real-time alerts to migrants. These apps can also
be used to report damages and request resources.
Ensuring that these technologies are accessible
and user-friendly for all, including those with limited
broadband access, is crucial for effective DRR.

Al-powered solutions: Al offers a promising avenue
for enhancing DRR and promoting the inclusion

of people on the move in building more-resilient
communities in the face of increasing climate-
related challenges. One area where Al can make

a significant impact is in predicting the effects of
extreme climate events on agriculture (Karanth

et al., 2023; Khonina et al., 2024). By combining

Al with multispectral technology, it is possible to
identify drought or flood risks in food-producing
regions in a robust manner, and to enable the
timely issuance of multilingual alerts via SMS and
mobile apps, providing a cost-effective and real-
time EWS (Materia et al., 2024). This information
can empower farmers to take proactive measures
to reduce crop losses and enhance their resilience
to climate change. Another critical application

of Al lies in flood risk mapping. By analysing
hyperspectral imaging data, Al can more precisely
identify high-risk flood areas, especially in regions

with concentrated migrant populations (Jones et
al., 2024; Khonina et al., 2024). This information
is invaluable for disaster response planning, as it
enables the optimal allocation of relief resources
to areas most in need. Al can also revolutionize
EWS. By processing satellite and drone data, Al
can generate actionable real-time alerts that can
be disseminated through multilingual mobile
applications and community radio. This ensures
that all community members, including migrants,
receive critical safety information promptly.

5.1.1 Social media and interactive platforms
for communication, coordination and
information-sharing

Social media and online platforms can be
leveraged for targeted communication with
migrant communities, facilitating information-
sharing, search and rescue efforts, and volunteer
coordination. They connect migrants with local
resources, social-safety networks and disaster
preparedness training materials, fostering a sense
of community. While these technologies offer
significant benefits, migrants and refugees often
face challenges in utilizing them effectively:

e Language barriers: Information disseminated
through MHEWS or public advisories might not
be available in languages understood by all
migrant populations, especially recent arrivals.

e [Limited access to technology: While mobile
phone ownership and Internet connectivity
have significantly increased, disparities
still exist. Migrants, especially those who
are undocumented or living in informal
settlements, may face barriers to accessing
mobile phones or reliable Internet connectivity.
These barriers can hinder their ability to
receive warnings or access resources through
technologies such as mobile apps.

e Lack of awareness: Newly arrived migrants may
not be familiar with local warning systems or
evacuation procedures.
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e Digital divide: Limited Internet access
and digital literacy among some migrant
populations can be a barrier.

e Data gaps: Migrant populations are often
transient and undocumented, making
data collection about their location and
vulnerabilities a difficult task. This hinders
targeted interventions.

e Data privacy concerns: Migrants, especially
undocumented migrants, may be hesitant to
register or provide personal information due to
privacy concerns. Building trust is crucial.

5.1.2 Inclusive solutions moving forward

To address these technological advancements and
challenges, the following strategies are identified
for more-inclusive approaches for migrants and
refugees:

Tech4DRR for all

MHEWS information needs to be multilingual

and disseminated through channels that are
accessible to migrants, including community
radio and migrant-focused social media groups.
Developing multilingual EWS and disseminating
alerts and public information through SMS in
multiple languages can address gaps and deliver
people-centred, end-to-end MHEWS that leave no
one behind. For example, Ecuador’s Ministry for
Disaster Risk Management partnered with the Red
Cross to broadcast EWS alerts in Haitian Creole
for Haitian migrants located in vulnerable coastal
areas. The Registro Unico de Migrantes (Single
Registry for Migrants) helps identify and register
migrants, facilitating access to social services
and potentially including them in EWS. In Peru, the
National Center for Disaster Prevention Studies
(CENEPRED) uses an MHEWS that broadcasts
alerts in Spanish and Quechua to reach Indigenous
and Spanish-speaking populations. Information
hotlines with multilingual support can further

bridge the gap; one such example is Colombia’s
Red Alerts app, which allows users to register and
receive real-time alerts based on their location.
This app could benefit geographically dispersed
migrant populations and is available in multiple
languages.

Community outreach

Collaborating with migrant community leaders

and non-governmental organizations (NGOs)

to translate vital information and conduct
awareness campaigns in native languages ensures
information reaches target populations. Fear of
detection, detention or deportation may inhibit
migrants in irregular immigration situations from
accessing available communication channels.
Migrant children may become unaccompanied

or separated, absorbing information and
communicating their needs differently from adults.
Elderly migrants in particular may lack host-
language capabilities. Migrants with disabilities
may require Braille, audio cues and other disability-
sensitive interventions.

During emergencies, migrants can provide
information about risks, local needs and protection
gaps. Stakeholders can communicate and receive
information from migrants through social media,
places of worship, and family and community
connections in their states of origin. Repeat
messaging, using multiple channels and mediums
(e.g. infographics, audio, print), can expand
coverage. Communication efforts should be
sensitive to migrants in different circumstances,
particularly those with irregular immigration status,
in detention or isolated and remote conditions, or
lacking access to social networks.
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Offline, location-based alerts

Develop location-based EWS to warn individuals,
regardless of the language they speak or their
mobile network. Implementing low-tech solutions,
such as community sirens or loudspeakers to
disseminate warnings in areas with limited mobile
phone penetration, is an example of this good
practice. Establishing people-centred warning
techniques based on traditional methods, such as
weather forecasts based on animal behaviour or
using volunteers to assess situations and inform
communities about dangers, are also valuable
approaches. For instance, some communities
make use of drums and fire signals. During
emergencies, stakeholders can develop consistent
messaging on risks and status updates, with
24-hour call centres staffed by linguistically diverse
and trained personnel offering information and
services once a conflict or disaster triggers.

Collaboration

Collaboration between DRR agencies, NGOs
working with migrants, and mobile network
operators is essential for developing inclusive
technology solutions. Working at national and local
levels, IOM assisted 16 countries in developing

or upgrading EWS and improving radio station
infrastructure to enhance public information and
warning announcements. This support increased
disaster information reach to marginalized
regions, increasing lead times before hazards
strike. Sharing conflict or disaster analysis among
stakeholders, including private sector actors and
civil society, facilitates informed decision-making.

Digital literacy training

Investing in digital literacy training programmes for
migrant communities can bridge the digital divide.
Local civil society actors have first-hand knowledge
of incipient conflicts or disasters and their potential
impacts on migrants. Health or outreach workers
who understand different cultures and languages

can effectively deliver information to migrant
communities. Using multiple communication
channels, including traditional and innovative
methods, accommodates diverse ways of
absorbing information. Mobile applications and
social media provide crisis-related information
cost-effectively. Helplines, hotlines and call centres
facilitate communication with migrants.

Integrating migrant data collection

Integrating migrant data collection into existing
systems, such as EWS and crisis monitoring
systems, can ensure that information on migrant
presence and conditions is systematically
included. Migrants (individually or collectively) can
contribute to data collection and analysis, which

is useful for risk assessments and preparation
(e.g. contingency plans). Earth observation data
can identify informal settlements where migrants
reside, informing targeted evacuation plans and
shelter allocation. Colombia’s EWS integration with
social media platforms allows wider information
dissemination and near-real-time updates, which
are particularly useful for younger migrants that
have a larger engagement with, and presence on,
social media. The Comprehensive Plan for Attention
and Assistance to Victims mobile app registers
internally displaced people and migrants for
targeted aid distribution.

Viewed through a DRR lens, the nexus between
climate change and human mobility is a potent
source of vulnerabilities at both the individual

and community levels. Actively involving migrant
communities in the design and implementation of
technology solutions for DRR ensures that their
specific needs and preferences are addressed. This
can be achieved through participatory approaches,
such as community workshops, focus groups

and feedback mechanisms. Engaging migrants in
this way is imperative for the leave no one behind
strategy, as it not only improves the relevance and
effectiveness of the technologies but also fosters
a sense of ownership and empowerment. However,
the effectiveness of technology relies on:
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Accessibility and affordability: Ensuring
migrants have access to devices and Internet
connectivity is crucial. This can be achieved
through partnerships with technology
companies, NGOs and government agencies.
Initiatives such as the UNHCR Connectivity
for Refugees programme work to provide
affordable and meaningful Internet access by
collaborating with stakeholders such as the
International Telecommunication Union (ITU),
GSMA and various governments.

Digital literacy: Training programmes help
migrants develop skills to effectively utilize
these technologies. Universities, training
organizations and NGOs can play a pivotal role
in this effort. For instance, universities can
offer courses and workshops on digital literacy
tailored to migrants’ needs, while training
organizations can provide hands-on sessions
and resources. Additionally, organizations
such as World Education and Microsoft
Philanthropies offer digital literacy resources
and training modules specifically designed for
refugees and migrants. These programmes
can be implemented by local NGOs, community
centres and educational institutions to ensure
migrants can fully benefit from available
technologies.

Data privacy: Data collection must be
transparent and secure, respecting migrant
privacy concerns. Organizations should
implement robust data protection measures
and communicate clearly with migrants about
how their data will be used and protected. This
builds trust and encourages participation in
data-driven initiatives.

6. Integrating
education and
technology into DRR
strategies

Effective DRR is an urgent priority for Latin America
and the Caribbean as climate change, population
growth, urban development in risk-prone locations
and other factors are increasing the overall toll of
disasters. In this context, integrating education and
technology emerges as a key strategy to reduce
disaster risks and simultaneously plays a crucial
role in preparation and mitigation strategies.

The combination of education and technology

can strengthen the resilience of vulnerable
communities in the face of catastrophic events.

e Community education as a fundamental basis:
Education empowers communities with the
knowledge and skills to prepare for, and face,
emergencies. Understanding local geography
is essential for identifying risk areas and
delivering training on safety protocols. Public
and/or community awareness is a fundamental
step, as an informed population is more likely
to adopt safe behaviours and participate in
disaster preparedness and resilience activities.

e Technology adoption: Technology offers
advanced tools for prediction, monitoring
and rapid response. EWS can provide timely
notifications to communities about imminent
hazards and impacts, ensuring valuable time
for evacuations and preparations. Remote
sensing and satellite surveillance facilitate
environmental change monitoring and risk
assessment, contributing to informed decision-
making. Implementing relevant technology
that communities can adopt is an important
challenge that can be developed collectively,
involving the community, local governments,
academia and other entities.
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e Digital educational platforms adapted to
culture and risk context: Technology offers
opportunities for designing educational
content adapted to the culture and risk needs
of communities, providing relevant information
on disaster preparedness, response techniques
and mitigation measures. Accessibility to
online resources allows education to reach
broader audiences, including remote or hard-
to-reach areas. Adapting content to different
levels of understanding facilitates teaching and
inclusion.

e Satellite and geospatial data: Satellite and
geospatial data collection and analysis provide
valuable information to assess and forecast
disaster risk. They are also useful in informing
the planning of specific interventions in risk-
prone areas.

e Sharing experiences and success stories:
Continuous collaboration between the
community, educational and technological
sectors, and government organizations is
essential to build a safer and more-resilient
future. Projects with this approach are being
developed in Latin America. One initiative is
the Network of Laboratories for Disaster Risk
Reduction in Latin America and the Caribbean,
a scientific, academic and institutional
community addressing gaps and challenges in
DRR through research, sharing capabilities and
technology development.

This international cooperation initiative involves
the NASA Disaster Programme, Red LabOT,

the Paraguayan Space Agency, leading private
technology companies and Esri Panama. It
includes 23 GeolLabs in universities, colleges

and research centres across 17 Latin American
countries, using spatial data and developing GEO
capabilities to address community needs and
challenges. Through the Lab Network and its Earth
Observations Education youth programme, more
than 500 high school students have been trained to
help their communities solve DRR challenges using
Earth observations, GIS and remote sensing.

/. Importance of
properly representing
data for tech
deployment

In modern decision-making and policy formulation,
data shapes our understanding of complex issues
and problems. Proper representation of data

is not merely a technical exercise but a moral
obligation influencing informed decision-making,
transparency, equity and social justice. In disaster
response and DRR, accurate, fit-for-purpose and
ethical data representation is not just a virtue but
a necessity (Hooker, 2021). Understanding data
and their impact on communities is crucial for
deploying technology to mitigate disaster impacts.

e Informed decision-making: Accurate and
fit-for-purpose data serve as the foundation
for supporting decisions at all levels. Proper
representation cannot be overstated, as
misrepresentation can lead to flawed
conclusions and misguided actions, especially
in high-stakes environments such as disaster
response. This is where intention and
positionality are crucial. When dealing with
divested populations, it must be acknowledged
that there may be flaws in technology design
and data collection that negatively impact
these groups. Organizations producing tools
and products sometimes have diversity issues
that affect the resources they provide. If you
are from the Global North, these products
are likely produced in your region with
accompanying biases. This problem can be
mitigated by, for instance, involving local actors
in testing, analysis and collection.

e Transparency and accountability: Transparent
data representation is a cornerstone of trust,
which is paramount in DRR and response
efforts. Institutions gain credibility when data
are accurately portrayed. This means indexing
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and publishing the data, implementation
tools and methods for review and scrutiny.
Communicating the data and collection
methods clearly and accessibly to various
populations enables stakeholders to hold
researchers and organizations accountable
during crises.

e FEquity and social justice: Proper data
representation ensures marginalized
groups are not overlooked in a disaster. It
addresses disparities and advocates for
equitable solutions, promoting resilience
and emphasizing inclusivity in leveraging
technology for effective DRR. Integrity and
bias in data representation pose a threat to the
integrity of our insights. There are lessons to
be learned about recognizing and mitigating
bias (Schwartz et al., 2022).

e Biases in data: Bias is described in scientific
terms as “any systematic deviation between
the results of a study and the truth” caused
by a tendency to favour one person, thing
or explanation over another (Science News
Learning, n.d.). Different types of bias can
be introduced at any stage of the research
process, skewing results and negatively
affecting the development of solutions.
Accurate and comprehensive data collection
is essential for formulating effective DRR
strategies. Data collection biases can
significantly undermine efforts by skewing
data, leading to potentially devastating
consequences. In disaster-prone areas, where
communities are already vulnerable, ensuring
unbiased data collection is crucial for an
effective response.

Sampling or selection biases occur when the
sample used in a study is not representative of

the entire population. When the sample is too
small, or not randomized, the study can result in
misrepresentations of the larger population’s actual

characteristics or needs. Addressing such biases
ensures that the policies developed meet the entire
population’s needs, encompassing the unique
needs of different communities.

It is also important to recognize and rectify the
historical underrepresentation of certain groups
in creating DRR strategies. Although disasters
are universal, they often spotlight long-standing
disparities and inequities experienced by racial
and ethnic minorities and those with less access
to resources, who are less likely to evacuate
and more affected by disasters (Bethel, Burke
and Britt, 2013). Ensuring these individuals and
communities are adequately represented can
reduce vulnerabilities and enhance response
effectiveness.

In the aftermath of Hurricane Katrina, officials in
Louisiana established the Road Home programme
with federal funding to help Louisianians rebuild

or sell their damaged houses (Hammer, 2022).
However, the decision to disburse funds based

on appraised home values instead of rebuilding
costs left those in poorer neighbourhoods unable
to rebuild. Racially discriminatory economic
practices like redlining’ meant homes in Black
neighbourhoods were appraised far lower than
those in White communities. As of 2021, there were
100,000 fewer Black New Orleanians than before
Hurricane Katrina, and the Black population of
New Orleans was the only racial group significantly
below its 2000 population level (Babb, 2021).

7.1 Diverse data collectors

To reduce bias during data collection, researchers
should assemble diverse teams who bring a variety
of perspectives, essential for technology-driven
disaster responses. This inclusivity ensures data
accurately reflect the complexities and varied
experiences of different demographic groups,

1 The practice of denying people access to credit because of where they live.
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leading to more effective and equitable disaster
response strategies.

The Office for the Coordination of Humanitarian
Affairs (OCHA) established a global humanitarian
data centre in the Netherlands in 2017 to improve
data collection and data sharing for disaster relief
efforts (The Humanitarian Data Center in the
Netherlands, 2016). By leveraging this database,
organizations can access comprehensive and
reliable data to better understand and respond to
dynamic crises.

7.2 Data analysis bias

Bias can also influence researchers when
interpreting results and drawing conclusions. This
can lead to skewed insights and misinformed
decisions, compromising response efforts.
Incorporating multiple analytical perspectives and
adhering to ethical data practices are essential

in technology-driven disaster research to provide
comprehensive and equitable data-driven response
strategies.

Confirmation bias occurs when researchers
seek and interpret information in ways that
affirm their pre-existing beliefs or values. Such
biases could compromise disaster management
strategies. For example, after the Exxon Valdez
supertanker spilled 11 million gallons of oil in
Alaska’s Prince William Sound in 1989, Exxon
and other stakeholders minimized the disaster’s
impact to protect corporate interests. Relying

on optimistic predictions led to underestimating
the resources needed, delaying response efforts
and hindering timely restoration (Brooks et al.,
2020). Researchers should clearly define study
parameters before analysing data and implement
peer review mechanisms to prevent personal
biases from influencing research outcomes.

Disaster responses must be culturally sensitive.
Analysing data without context can lead to
misinformed and potentially harmful decisions.
Culture - the shared collective knowledge,

beliefs and traditions that allow a group to adapt
to their ecological contexts over generations

- plays a crucial role in understanding how
people experience disasters and develop
adaptive strategies (Rahmani, Muzwagi and
Pumariega, 2022). Language barriers and low
education levels among minority populations
were significant impediments to effective
disaster relief after Hurricane Katrina (Systems
Research Applications International, Inc., 2008).
These barriers led to inadequate warnings and
assistance, exacerbating the vulnerability of
Louisiana’s immigrant communities. Understanding
and respecting cultural norms and values are
essential in interpreting community needs and
maximizing disaster response effectiveness,
especially regarding mental health responses and
humanitarian relief efforts.

7.3 Intersectional analysis

Recognizing that individuals belong to multiple
identity groups is crucial to understanding
experiences during and after disasters.
Intersectionality provides a lens to see how
various forms of inequality operate together

and exacerbate each other, making it important

to analyse since those facing more inequalities
experience higher risks during and after disasters
(Steinmetz, 2020). Researchers who take an
intersectional approach can better reflect on the
complexities of power structures at play in climate
and disaster risk, preventing the simplification of
local realities that may misinform policies (Chaplin,
Twigg and Lovell, 2019). Intersectional approaches
can provide more nuanced and equitable solutions,
ensuring no one is left behind.

After Hurricane Irma struck Antigua and Barbuda
in September 2017, government stakeholders,
such as the National Office of Disaster Services
(NODS), the Directorate of Gender Affairs (DoGA),
and Disaster District Coordinators (DDCs),
implemented programmes responding to various
intersectional vulnerabilities (Kotsinas, 2020).
Dignity kits (including toothpaste, soap and
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menstrual products) were distributed to women,
and psychosocial support services were provided
to create safe spaces to discuss toxic masculinity
and gender-based violence. The Government’s
approach made visible the social categories of
sexuality and gender identity, which are commonly
neglected in disaster management.

7.4 Ethical data practices

Ethical data practices ensure that the autonomy
and privacy of disaster survivors are respected.
Safeguards that ensure participants give their
informed consent and that protect their privacy
through data anonymization are ethical necessities
when deploying technology in disaster-stricken
areas (Substance Abuse and Mental Health
Services Administration, 2016). Researchers should
respect the autonomy and rights of individuals to
maintain study integrity, and removing personally
identifiable information from data sets prevents the
misuse of private data.

Properly representing data is a moral imperative,
particularly when technology becomes a critical
tool in disaster response and risk reduction.
Embracing inclusivity, intersectionality and ethical
practices becomes the catalyst for creating a more
just and accurate representation of our world in the
context of disaster response. The ethical use of
technology, rooted in unbiased and inclusive data
representation, becomes the linchpin for effective,
compassionate and equitable disaster response
strategies.
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1. Importance
of information
components for
decision-makers

Early warning systems (EWS) have a primary
function, which is to alert the population and
authorities quickly and accurately, through as
many channels as possible, about the occurrence
of dangerous phenomena that jeopardize the
safety and lives of people, thus enabling them to
act promptly. In Latin America and the Caribbean,
these systems’ characteristics differ depending
on the geographical context, the regulatory and
organizational framework of each country, and the
level of economic, information and technological
resources available. However, they all require a
robust data and information component to ensure
all their components operate effectively.

Components are commonly divided into and
connected via: a monitoring system that
involves specialized technical departments and
agencies that provide data on different hazards;
an information system (or risk knowledge
system) that enables a logic to be established
for adapting, adopting and promoting standards,
protocols, processes and technological solutions
for the management of information related to
disaster risk management at various levels; and
a communications system that facilitates the
continuous exchange of information between
organizations involved in disaster risk reduction
and management, in addition to emergency
preparedness and response.’

Since information is an extremely important
factor, it is also important to identify its points of
interaction with the human component, especially
regarding information that informs management
and decision-making in emergencies and that can
be supported by technologies that help it to be
understood quickly.

According to the World Meteorological
Organization (2018),2 when discussing EWS,
it is customary to differentiate between some
components associated with:

1. The identification and knowledge of risk, which
implies fully understanding all dimensions
of disaster risk, including the characteristics
of hazards, exposure and vulnerability, and
their links with people, communities and
organizations at different territorial levels.

2. The systems and processes for detection,
monitoring, analysis and forecasting of
hazards, and their potential impacts on the
exposed population and infrastructure.

3. Dissemination and communication of
warnings, which include alert dynamics (related
to the organization and flows of information
to different actors) for authorities and the
population in the event of adverse forecasts
and emergencies. These warnings seek to
ensure that decision-makers, formal entities
with technical and political authority and
responsibility to act in emergencies, and local
actors with influence in their territories receive
timely warnings regarding imminent dangerous
events, thereby facilitating national and local
coordination, in addition to response actions.

4. Preparedness and response capabilities, which
include measures to be taken in response

1 Ideally, this should incorporate the criteria of interoperability, reliability, scalability, portability, resilience and
redundancy (protection against losses and failures), among others.

2 For more information, see: https://earlywarningsforall.org/site/early-warnings-all
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to alerts at both the administrative and
community levels, supported by an adequate
understanding of risks and effective and
efficient communication about the possible
impacts of an event.

Each of these elements is important when
designing an EWS that functions correctly and
promptly in emergency situations. However,
focusing on the third point — specifically the
work of authorities and decision-makers — some
elements critical to the proper functioning

of decision-making structures in emergency
situations are associated with the information
available. These are: a) how information is
organized, to prioritize relevant data for fast
decision-making during crisis situations; b) the
clarity of information, to ensure precision and
facilitate the comprehension and reading of
information; and c) la the speed of information
delivery, to reduce the time between the issuance
of crucial data and its reception by the responsible
authorities and the population at risk. The first
two points are connected to the design criteria
and protocols that the information system

can establish. The last point is related to the
physical and technical aspects that fall within the
communication system'’s framework for action.

On one hand, the information system (whose
function is to process, analyse and structure

data from monitoring and transform them into
comprehensible and useful information for various
actors, such as government authorities, emergency
agencies and the population in general) aims to
facilitate the interpretation of possible impacts,

thereby helping establish an order of priority for
information according to its relevance and urgency.
This in turn enables forecasts to be generated

and impact scenarios to be developed. Once the
information has been processed and organized in
order of priority, it is essential that it is successfully
delivered to those who must make decisions and
act. In this sense, the communication system

plays a key role in the dissemination of alerts and
recommendations through multiple channels, such
as radio, television, mobile phone services, social
networks, sirens and official bulletins. Furthermore,
the communication system defines the technical
parameters and the protocols necessary to

ensure that the information is transmitted clearly,
accessibly and in the shortest-possible time,

to enable authorities and civil society to take
preventive or response measures in the face of an
imminent event.

In this way, EWS are strongly influenced by

the synergy and interaction between: the
monitoring system, which provides data on
hazards and forecasts; the information system,
which determines the way in which to order

data according to their priority and relevance,

and how to present them to facilitate data
comprehension; and the communication system,
which is responsible for establishing the best
technical parameters for the entry, sending and
reception of information. Understanding the
points of integration and complementarity of each
system, along with their contributions to EWS, is
extremely important when evaluating the technical
and technological developments that should be
deployed in order to achieve key objectives.
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Figure 1. Synergies between monitoring, information and communication systems

Monitoring System

Information
System

It is important that this entire complex interaction
between systems incorporate elements of
adaptability given the diversity of hazards to
which a territory is exposed, since in many cases
hazards have distinct timelines. For example, in
the case of extreme hydrometeorological events
such as hurricanes or increases and decreases in
temperature, there is more time to detect, monitor,
plan and generate information flows. The time
between the risk being identified, unfavourable
forecasts being made and a phenomenon’s
occurrence being recorded allows evidence to be
provided and guidelines prepared for decision-
makers relatively far in advance. In contrast, for

Communication
System

events that cannot be detected as far in advance,
such as earthquakes and tsunamis under certain
conditions (e.g. proximity of the epicentre to the
coast), fast reactions are required, since every
second counts in reducing material and human
losses. This makes the organization of information
and the speed of its transmission extremely
important, given that the flow of timely data can be
overwhelming in light of changing conditions, how
events develop and the dynamic impact scenarios
that unfold in these situations.

Considering the time factor is therefore not
only crucial when comprehensively designing
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the information flows and transmission and
communication systems, but also in addressing
the various needs and objectives in terms of

the information and its relationship with time.

On the one hand, the population needs alerts to

be issued as quickly as possible and to access
them in the shortest-possible time and through
various channels,® including low-tech transmission
channels, such as sirens and megaphones, in order
to reach the largest number of people possible. On
the other hand, authorities and decision-makers
need more-detailed information with greater
possibilities for analysis. This type of information,
and its more time-consuming processing, is

key to planning for, and adequately managing,
emergencies.

Furthermore, it is used in strategic decision-making
processes, such as the allocation of resources,

the coordination of response teams and the
application of risk reduction measures. However,
due to its complexity, it is not suitable for the
process of issuing alerts, which requires speed,
simplicity and precision.

We can therefore appreciate the importance of
information, and the times and ways in which

it intervenes in different units and systems for
disaster risk reduction and alert processes during
emergency situations.

Looking at EWS in more detail, we must point out
some essential elements that intervene in the flow
of information at different levels and that affect
how and when decision-makers react. The main
elements are:

a. Data acquisition: This is the crucial first step in
the functioning of an EWS. It involves collecting

relevant information from various sources

- depending on the hazard being monitored

- such as meteorological stations, seismic
sensors, satellites and field report@olutions to
emerging problems, and they should undergo
continuous training and knowledge updating
to stay at the forefront of the use of tools,
methods and technologies.

Data processing: Consists of converting raw
data into useful information through statistical
analysis, algorithms and predictive models.
This very important process allows for data to
be interpreted and forecasts to be generated
that can be used by decision-makers. Some
crucial factors are efficient processing (which
enables complex information to be interpreted
quickly) and the use of advanced predictive
models to reduce uncertainty, improve

the levels of robustness and accuracy in
predictions, and increase confidence in the
decisions made.

Information management protocols: Establish
the ways of managing and distributing
information within the EWS. These protocols
ensure that information is managed in a
coherent and standardized manner, and

help decision-makers interpret and use

it. Ideally, they should be governed by the
principles of: consistency, to ensure that the
information is robust and comprehensible;
efficiency, to reduce response times based
on the improvement in data transfer and
management; and security, to ensure that
sensitive information is not misused and

to respect confidentiality requirements as
appropriate.

3 According to sources from UNDRR and WMO (2022), global access to the use of communication channels is
distributed as follows: 91% of the population use social networks, 87% use television, 81% use the Internet, 91%
use radio, 76% use print media, 84% use emails and 72% use mobile phones. These distribution levels allow us to
establish an order of priority for channels when sharing alerts and information, and to adapt the technologies and
technical requirements to ensure they are used correctly and achieve the objective, which is to inform in a timely

manner.
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d. Availability of trained technical personnel:
Personnel should have the necessary
training and knowledge to handle complex
technologies, interpret data accurately and
make evidence-based decisions. Ideally, they
should also have technical experience that
allows them to find solutions to emerging
problems, and they should undergo continuous
training and knowledge updating to stay at
the forefront of the use of tools, methods and
technologies.

e. Writing and formatting protocols for information
delivery: These must enable standardized
ways in which information is organized and
presented to decision-makers, ensuring that
data are clear, relevant and concise in all
types of reports and alerts, prioritizing easy-
to-understand and easy-to-use structures, and
ensuring uniformity in formats to facilitate data
comparison and identification of trends and
variations.

f. Data management technologies: These are
the tools and systems used to communicate,
store and manage data on digital platforms
or other mechanisms. These technologies
must be capable of handling large volumes of
information without diminishing its integrity
and coherence, while ensuring speed in the
availability, transmission and access to data,
and maintaining robust security parameters.

g. Information delivery mechanisms: These
include physical and technical elements
such as software (applications, web pages,
etc.), communication mechanisms, signal
protocols and data packaging, which are
vital for successfully sharing information
with decision-makers and the general public.
Redundancy of communication channels and
verification mechanisms is also crucial to
ensure that information is communicated in
its entirety. These elements must incorporate
accessibility criteria, facilitate interaction with
and feedback from the system’s users, and
allow for a rapid flow of information, in terms

of both distributing alerts and updating critical
information.

h. Designing information visualization: This refers
to how information is presented, seeking
to ensure it is easy to understand, interpret
and manage, including the appropriate use
of shapes and colours, graphs, maps and
dashboards, among others. Good user-oriented
(co)design should help make information quick
to understand and effectively communicate
complex data to varied audiences.

2. Challenges
in technological
Integration

Addressing the various challenges related to
technological integration in EWS is fundamental
to improving their effectiveness and capacity to
respond to disasters. Firstly, regarding the security
and privacy of information, the collection and
management of large volumes of data require
strict security measures to be adopted to protect
sensitive information and thus guarantee the
privacy of individuals. To achieve this objective, it
is important to consider during the planning stage
efforts that allow progress in the construction and
dissemination of frameworks and protocols that
integrate cybersecurity with DRR. For example, the
development of advanced encryption protocols
and cyber threats mitigation strategies. The
implementation of robust authentication systems,
state-of-the-art firewalls, and intrusion detection
technologies are necessary to achieve this
objective. In addition, design guidelines should
conform to the rules or regulations promoted

by official computer security agencies, such as
the Computer Security Incident Response Team
(CSIRT) in Chile, the guidelines indicated in the
CONPES Cybersecurity and Cyber-defence Policy
Guidelines of Colombia, or international data
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protection parameters, such as the General Data
Protection Regulation of the European Union,
among others.*

Furthermore, we must keep in mind the set of
development efforts and diverse platforms that
various participants have implemented as part of
their contributions through the set of initiatives
and actions dedicated to disaster resilience.
However, regarding interoperability between
these systems and platforms, the differences
between standards and technical elements
established by the various service providers must
be considered. These differences can hinder the
fluid and efficient integration of information both
in terms of technical aspects and the cost of
integrating functions and flows.’ It is therefore
vital to develop interoperability models that
facilitate communication and data exchange
between heterogeneous systems, and to promote
the generation of processes for standardizing
protocols and data formats with a view to future
adaptation. To this end, the implementation

of open APIs and the use of communication
standards such as RESTful and MQTT® can
represent a viable solution for multiple sectors at
varying levels of development, helping to improve
interoperability. Furthermore, the complementary
adoption of microservices-based architectures

can facilitate the modular integration of different
technological components.

It is also important to address the potential
difficulties regarding scalability and adaptability

to different geographic, demographic and
technological contexts and to multiple hazards,
since this requires a flexible and scalable
technological infrastructure. To achieve this, it is
essential to promote research development that
analyses scalable system alternatives capable of
dynamically adjusting to environmental changes
and alert needs, using principles of adaptive design
and fault recovery capacity. These efforts should
be accompanied by the adoption of cloud solutions
and containers such as Docker or Kubernetes; this
will allow resources to be increased or decreased
according to demand.” Additionally, implementing
machine learning algorithms that adapt to new
data patterns can help improve system flexibility.

Similarly, mass data collection requires advanced
storage, processing and analysis capabilities to
extract useful and accurate information. Progress
must be made in establishing efficient big data
methods and data cleaning and validation
techniques to ensure the quality and relevance of
the information used in EWS. The implementation
of open-source big data solutions such as

4 For more information, see: https://eur-lex.europa.eu/legal-content/ES/TXT/?uri=celex%3A32016R0679.

5 It would be interesting to address elsewhere the scope and level of involvement of communication service providers
regarding the technical, development and responsibility requirements in disaster situations, along with their role in
establishing regulations, protocols and rules to improve resilience in different territories.

6  RESTful is the implementation of the REST (Representational State Transfer) software architecture style, which
is used to perform communications between the client and the server, and which relies on the HTTP protocol for
communication with the server. MQTT (Message Queuing Telemetry Transport) is a lightweight messaging protocol
used with clients who need a small code footprint, are connected to unreliable networks or have limited bandwidth
resources. It is mainly used for machine-to-machine (M2M) communications or Internet of Things (IoT) type
connections. For more information, see: Richardson et al. (2019).

7  Docker is a container runtime technology that enables software to be packaged into standardized units called
“containers” (understood as isolated and lightweight environments that allow applications to run consistently
and efficiently, encapsulating the code, dependencies and configuration that are necessary for its execution).
Kubernetes, on the other hand, is a container organization tool that enables system scaling to manage, coordinate
and program containers on a large scale. For more information, see: Shah and Dubaria (2019).
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Hadoop and Spark,? along with non-relational
databases (NoSQL), facilitates the handling of
large data volumes and provides a viable option
to efficiently address this issue, considering

the costs associated with implementing such
systems. Furthermore, using automated data
processing flows (for data routing and practical
transformation) improves the consistency and
accuracy of information by ensuring smooth data
collection. This optimizes information use, allows
for a focus on behaviours and process efficiency,
and reduces the possibility of human errors.

Itis also crucial to take a comprehensive approach
to inclusion and closing the digital gap among
different population groups. Advances in modern
technology do not necessarily align with advanced
levels of education, knowledge, access to and
adoption of various developments and applications
of these technological solutions. This presents
unique challenges, including how to provide
inclusive and effective communication before,
during and after disasters. In Latin America and
the Caribbean, we often have a range of competing
communication channels, service providers and
different coverage levels. This creates a very
disparate landscape that hinders information
integration, data flow channels and synchronization
of messages that would ensure consistent

and accessible information in real-time. In this
context, exploring initiatives to unify platforms
through systems that integrate multiple channels
into a single centralized ecosystem — such as
simultaneous alerts via SMS, social media and
radio stations, for instance — could have significant
positive impacts and set a precedent for further
developments with broader coverage and adoption
among diverse populations.

To continue making progress towards ensuring
that different communities, especially the most
vulnerable (including rural communities), have
access to and can benefit from EWS-integrated
technologies, we should look into digital inclusion
strategies that may eliminate inequalities in
technology access, considering socioeconomic,
educational and geographic factors, as well as
accessibility elements for people with different
types of disabilities. Designing low-cost, easy-to-
implement solutions — such as lightweight mobile
applications and alert systems based on mobile
phone messaging — that operate within limited
communication infrastructures is key to improving
coverage in remote areas or places with digital
infrastructure constraints.

An additional challenge is involving local
communities in designing, implementing and/or
operating EWS through this type of technology.
The use of applications that allow people to report
adverse events can enhance hazards awareness
and strengthen community capacity to detect them
through community monitoring. One such example
is the Red de Informantes Mercalli [Mercalli
Informants Network], used by the National Service
for Disaster Prevention and Response (SENAPRED,
by its Spanish acronym) of Chile. SENAPRED
establishes a training protocol for informants
located in different territories. After an earthquake,
these informants report their perception of the
intensity and damage to authorities through
official channels using standardized information.
Such initiatives can be implemented through
communication systems with low connectivity

and technological requirements but that are able
to reach much of the population, such as walkie-
talkies and mobile phones.

8 Inthe field of Big Data, Hadoop (Apache) is an open-source software framework that enables the programming
of distributed applications that are capable of working with massive amounts of data and network nodes. This
streamlines workloads, enhances scalability and ensures fault tolerance. On the other hand, Spark (also by Apache)
is an open-source big data project that offers high-level programming models. It can operate with SQL and real-time
data processing APIs to apply distributed machine learning and graph processing, among other functionalities. For
more information, see: Benbrahim, Hachimi, and Amine (2019).



Technology and multi-hazard early warning systems (MHEWS) | USE OF TECHNOLOGY FOR DISASTER RISK REDUCTION

Another interesting example is the case of

Mexico and the design of the guide to developing
community-based EWS, embedded within the
project “Early Warning Systems and Risk Reduction
for Slope Instability Associated with Deforestation
and Degradation in Climate Change Contexts”
(WRI, UNDP, SEMARNAT and INECC, 2021). This
inter-institutional effort involves organizations
such as the Secretariat of Environment and

Natural Resources (SEMARNAT, by its acronym

in Spanish), the National Institute of Ecology

and Climate Change (INECC, by its acronym in
Spanish), the World Resources Institute (WRI),

and the United Nations Development Programme
(UNDP) in Mexico. Through this partnership, they
have created this instrument with the objective

of strengthening the adaptive and response
capacities of the population to hydrometeorological
phenomena and climate change impacts, primarily
in rural and Indigenous regions, as an adaptation
and disaster risk reduction strategy (WRI, UNDP,
SEMARNAT, INECC, 2021, p.9). This initiative
enables communities to participate in the creation
of EWS, in which technology integration plays a
privileged role in developing solutions tailored to
local social, geographic contexts and demographic
contexts.

An important element is also addressing the
challenge of sustainability and long-term
maintenance of these technological systems. It is
crucial to consider the socioeconomic conditions
of territories, communities and governments, as
well as their capacity to continuously maintain and
update the enabled technological infrastructures.
For that reason, it is important to study and
establish sustainable financing models and
preventive maintenance strategies that ensure
the continued operation of existing technological
systems. In addition, it is important to adopt

scalable and adaptable solutions that can facilitate
these tasks, and to integrate them into policy
instruments and territorial planning frameworks to
provide long-term viability. However, if we wanted
to resolve a recurring limitation in EWS in Latin
America and the Caribbean, it would be useful

to observe the disconnect between EWS and
territorial planning processes. In various countries
in the region, inadequate planning has led to
human settlements being built in very exposed and
vulnerable areas, significantly increasing disaster-
related risks. For instance, in Terrenas, Dominican
Republic, unregulated urban growth and wetland
removal for tourism infrastructure development
have created conditions that hinder effective risk
management (Del Granado et al., 2016). Such
examples are common across the region, and to
overcome these barriers, it is highly recommended
that information from EWS be used to inform and
update territorial planning instruments, promoting
measures that encourage sustainable land use and
prevent the construction of settlements in high-risk
areas.

This integration helps anticipate disaster scenarios
and direct public investments towards projects
that reduce structural and social vulnerability.

It also presents an opportunity to promote

the prevention of key ecosystem degradation.
When, for example, mangroves and wetlands are
compromised — and in many cases even affected
to the point of disappearance —, their natural risk
reduction capacity diminishes in many regions of
Latin American and the Caribbean.® Reforestation
and sustainable resource management projects
serve as an example of how local communities
can actively participate in risk reduction, while
strengthening their adaptive capacities and
promoting social cohesion. Integrating these
actions into educational and awareness-raising

9 In Ecuador, the conversion of mangroves into shrimp farms has increased exposure to seasonal flooding, while in
the Dominican Republic, hotel infrastructure has removed natural barriers against hurricanes and storms. Restoring
these ecosystems should be made a priority, not only due to their capacity to protect against disasters but also
because of their contribution to sustainable development and biodiversity conservation. For more information, see:

Del Granado et al. (2016).
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programmes presents an opportunity to foster a
mindset based on prevention and resilience. This
can also serve as a pillar for developing guidelines
that enable the collection of data and information
from the community level, leveraging local
knowledge regarding natural resources, geography
and infrastructure in the territory. Additionally,

it facilitates the establishment of appropriate
usage criteria for decision-making and makes it
possible to link this type of information with EWS
to enhance timely reporting and monitoring of
emergency situations in areas where equipment
and personnel are scarce.

In this regard, self-managed EWS developed in
local communities represent a valuable foundation
for disaster risk management and reduction in rural
areas with limited access and low resources. These
systems, often based on traditional knowledge and
simple tools such as walkie-talkies or community
alarms, can enable immediate and contextually
relevant responses to emergencies. However,

they could be made considerably more efficient
through strategic investments that facilitate

the integration of some modern technologies.
Supporting the development of these systems that
use more-accessible technologies, such as mobile
applications or low-cost sensors, could improve
the reach of alerts by expanding coverage and
reducing exclusive dependence on external actors.

We recommend working towards developing action
lines that help establish strategic partnerships
with the private sector, foster synergies between
public and private actors, and forge validation
connections with academic institutions. This
would enable balanced participation and strong
collaboration. A positive example of such a
partnership is the Participatory Implementation
Plan for the Trinational Early Warning System
between Bolivia, Brazil and Peru. This initiative
focuses on “the adaptation of municipalities in
the Amazonian tri-border area to climate change

through an advanced drought and flood forecasting
service.""® This plan is implemented by the Amazon
Cooperation Treaty Organization (ACTO, by its
acronym in Spanish) under the Strategic Action
Program for the Integrated Management of Water
Resources in the Amazon Basin. Such initiatives,
as well as community-based EWS like the
aforementioned guide, promote the participation
of public sector representatives and committed
community leaders in local spaces and enable

the development and strengthening of capacities
for designing EWS based on local realities and

the effective participation of communities. This
serves as an excellent example of opportunities
for multiple integration of community participation,
technology development and DRR.

3. Best practices and
recommendations
for optimizin
information flow for
decision-makers in
EWS

Considering the above, some best practices can
be established to help improve and facilitate the
proper functioning of EWS, particularly in relation
to the role of decision-makers who use them. Best
practices are also systematically linked to other
components of the disaster risk management and
reduction ecosystem.

Firstly, one best practice is that the technical
agencies responsible for providing forecast data
and information on events associated with natural
phenomena, as part of the monitoring system,

10  For more information, see: https://aguasamazonicas.otca.org/bolivia-brasil-y-peru-crean-plan-participativo-de-
implementacion-del-sistema-de-alerta-temprana-trinacional/


https://aguasamazonicas.otca.org/bolivia-brasil-y-peru-crean-plan-participativo-de-implementacion-del-sistema-de-alerta-temprana-trinacional/
https://aguasamazonicas.otca.org/bolivia-brasil-y-peru-crean-plan-participativo-de-implementacion-del-sistema-de-alerta-temprana-trinacional/

Technology and multi-hazard early warning systems (MHEWS) | USE OF TECHNOLOGY FOR DISASTER RISK REDUCTION

communicate and report information using
internationally recognized and well-documented
standards. This helps facilitate cooperation

and the integration of cross-border support
networks in the event of an emergency, while

also streamlining the responsible actors in these
processes. Additionally, we recommend that staff
in EWS departments (or equivalent) should have
the knowledge and analytical capacities regarding
multiple socio-natural phenomena and that they
should participate in periodic training and refresher
processes. This helps them determine how urgent
information transmission is, ultimately helping to
reduce reaction times (UNDRR and WMO, 2022).

Furthermore, it is advisable that communication
formats follow criteria for prioritizing information
clearly based on the importance and use of the
data during and after an adverse event. The
prioritization criteria should be presented in

a way that simplifies the user experience and
facilitates data comprehension, thereby improving
decision-making, reducing response times and
improving emergency management. It is also
essential to develop and implement redundancy
and backup systems to ensure that information
remains available at all times, even in the event
of technical failures, service interruptions or
disasters that may affect infrastructures. The
continuity of communication and information
flows and processes, along with the functionality
of the channels that enable emergency response
protocols, must be supported by backup
mechanisms and alternatives to ensure they can
operate in any eventuality.

It is also recommended that the process for
adopting technologies integrate the training of
personnel working in EWS and incorporate levels
of co-creation with them, facilitating the simple
and fast adoption of information, actions and
measures. In this regard, it is essential to make
progress towards building a governance model
that guarantees the inclusion of all technical
bodies and stakeholders within the multi-hazard
early warning systems (MHEWS). This means
guaranteeing that no institution is relegated or

excluded from decision-making processes and
ensuring stakeholder representation is balanced.
Additionally, it is crucial to foster investment in
technologies that benefit multiple institutions,
thereby ensuring effective and equitable
collaboration within the system. Furthermore, it

is advisable to develop EWS and their associated
systems by leveraging, whenever possible, existing
and operational technologies, and avoiding the
imposition of new technologies that require
retraining for their users and operators. Although
this principle is particularly relevant for countries
lacking the necessary resources to implement
and deploy new high-cost infrastructures, it is also
applicable to those countries that do possess such
resources. It is not so much a matter of resource
management as an acknowledgement that digital
systems have an impact (such as resistance

to change or increased time for adaptation and
adoption of new usage methods) on the people
who use them, and it is advisable to minimize this
impact whenever possible.

Advancing towards certain levels of
standardization in both data collection and
processing and presentation of information
facilitates the creation of international networks
with a common language for disaster prevention.
This helps shape international partnerships in
which the analysis of experiences in the use of
technologies for EWS developed in other countries
can help identify trends, best practices and
innovative solutions that have proven effective in
different contexts. Gathering positive elements
from successful experiences and enabling
processes to incorporate and adapt to regional and
local contexts can contribute to developing tools
that avoid becoming obsolete quickly in terms of
their interoperability.

Finally, we must reiterate the importance of having
robust governance among the actors participating
in MHEWS, to make these systems more efficient
in resource distribution and optimization of
measurement instruments. This is a crucial factor
in establishing collaboration pillars that enable

()
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new forms of development and the adoption of
improvement alternatives for current systems.

4. Improving
information delivery
processes to EWS
decision-makers: the
case of Chile

With the enactment of Act No. 21.364 in 2022,
which created the National Service for Disaster
Prevention and Response (SENAPRED, by its
Spanish acronym) of Chile, improvements in
understanding of risk and in strengthening

of research and EWS were observed through
capabilities and infrastructure to monitor and
analyse hazards, vulnerabilities and emergency
impacts (National Congress of Chile, 2021, article
24). This act is supplemented by the National
Policy for Disaster Risk Reduction 2020-2030,
whose fourth priority pillar aims to strengthen

EWS in their phases of monitoring, evacuation and
communications. The aim is to ensure timely and
accessible information through the development of
technological infrastructure to alert authorities and
the population (National Emergency Office, 2020,
p.99).

In this context and in anticipation of the 2024
wildfire season, SENAPRED identified the need to
evaluate existing opportunities for improvement
in terms of incorporating modernization elements
into the national EWS. To this end, an assessment
was conducted that revealed critical areas for
improvement, with information flows for decision-
makers being one of the most relevant aspects.
The assessment took into consideration the
wildfires in early 2023, which affected the regions
of Maule, Nuble, Biobio and La Araucania. This
emergency exposed significant opportunities

for innovation in how information was entered,

transmitted and received, and examined how these
elements impacted the capacity and speed of
response from risk managers and decision-makers
in the public sector.

Continuing to focus on innovation and generation
of continuous changes in the EWS, SENAPRED
undertook to improve and reduce response times
in decision-making during disasters, and to adapt
to the new conditions arising from emergencies.
To address the standardization of information,
records were studied and the Alfa 2 Project was
revisited, which utilized earthquake software in
systematizing, consolidating and disseminating
early warning and emergency reports. This was
complemented by the Emergency Operational
Management System Experience (2016—2018),
which sought to integrate procedures from early
warning centres, now called the early warning unit,
and mainly focused on consolidating information
on earthquakes and tsunamis.

Both initiatives helped the organization understand
the need to not only tailor the EWS to the
particularities of each disaster but also to consider
the needs related to the human components
involved in the EWS information supply chain,
especially concerning early warning unit operators.
These operators deliver detailed information to
decision-makers and their work largely determines
how easy critical data are to understand when
establishing and executing actions during an
emergency.

Thus, to meet the objectives set by both Act No.
21.364 and the National Policy for Disaster Risk
Reduction, SENAPRED, through the Ministry of the
Interior and Public Security, submitted a request

to modernize the EWS, focusing its work on
opportunities for improvement regarding the work
of the early warning unit. Faced with this challenge,
the Risk and Emergency Management Unit of

the Subsecretariat of the Interior began working

in 2022 with the Institute for Disaster Resilience
(itrend) to conduct a series of assessments to
prepare for the development of a technological tool
aimed at improving information flows for decision-

()
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making, capable of systematically and effectively
visualizing the information deployed by the early
warning unit.

The initial assessment revealed significant
shortcomings in previous information flows, such
as deficiencies in report drafting protocols and
the technological support used for timely data
transmission and reception. It also highlighted
challenges that operators face in delivering
information to the authorities, such as prolonged
processing times and a lack of information
standardization.

Based on this assessment, work began in 2023 on
developing two applications capable of mitigating
these shortcomings, reducing report generation
times and ensuring information standardization
and organization. The first version of each app was
developed with a focus on wildfires. As this was an
initial phase, it was decided to prioritize this hazard,
as it is one of the most recurrent in the country
according to SENAPRED data.

The first tool was designed as a data acquisition
application for the standardized generation

of alerts and for use by the early warning

unit technical team, with the aim of reducing
report generation times while standardizing

and organizing information. Consequently, it
was named the “Event, Alert and Emergency
Management and Monitoring Tool for the Early
Warning Unit.”

The initial version was launched in September
2023 and underwent a pilot phase from January
to June 2024 at the national early warning unit in
the Metropolitan Region. The tool is now being
introduced in priority regions such as Valparaiso,
0'Higgins, Maule, Nuble and Biobio, with specific

training on its use being run for regional alert unit
personnel and SENAPRED regional staff. Being

a web application, it does not require additional
software installation on users’ computers, as it

is fully operational on the most widely used web
browsers (such as Chrome, Edge and Firefox).

The tool's data model considers three main
structures: events, alerts and committees.

Events store technical characteristics related to

an emergency, such as the area affected by a
wildfire, damages, and resources used to tackle the
emergency. Alerts correspond to the administrative
information of the emergency and indicate type
(early preventive, yellow or red), level (municipal,
provincial, regional or national) and alert coverage
(the specific affected area). Finally, committees
are a record of technical meetings such as
Disaster Risk Management Committees (COGRID,
by its acronym in Spanish)'" or technical tables
conducted in an emergency.

One of the advantages of the implemented model
is its capacity to retain the history of events and
alerts as the emergency evolves. This is achieved
through generating a log of records documenting
event updates. Similarly, for an alert, it is possible
to record its evolution through the various states
that are defined over time. These options ensure
that the information for each event and alert is
consolidated into a single entry, guaranteeing the
traceability of emergency management.

Additionally, to prevent duplicated work and
information, the model allows events, alerts and
committees to be linked. Thus, an alert can be
linked to one or more events, eliminating the
need to re-enter technical information that would
otherwise warrant the declaration or update

of an alert in the system. This functionality is

11 The Disaster Risk Management Committees are a management component within the National Disaster Prevention
and Response System. They are activated in the event of an emergency at the municipal, provincial, regional or
national level. For more details on Chile’s emergency response organization, see Act No. 21.364, which establishes
the National Disaster Prevention and Response System, replacing the National Emergency Office with the National
Service for Disaster Prevention and Response and adapting the guidelines.
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used in the automatic generation of documents
that the national and regional early warning

units traditionally draft manually. In total, three
documents were generated: i) Incident or
Emergency Report; ii) Technical Risk Analysis; and
i) National Summary of Wildfires. Finally, each

| Technology and multi-hazard early warning systems (MHEWS)

time a user declares an alert or generates a new
status for an existing one, the system sends a
notification, which is currently being utilized by a
second tool: a mobile application developed for
authorities, described below.

Example of the home dashboard: “Management and Monitoring Tool for the Early Warning Unit”
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The second tool was a mobile application called
“Events and Alert Monitoring” (EMA, by its acronym
in Spanish), a visualization tool designed for
institutions and key stakeholders involved in
monitoring events, alerts and emergencies. It

was developed to enhance communication and
decision-making among institutions in response
to various types of emergencies and is compatible
with i0S and Android devices. This application,
which provides an up-to-date record of alerts
declared by the early warning unit for wildfires,
allows alerts with behavioural patterns to be
detected, and offers detailed information on each
issued alert. For each alert, the tool provides

Vaparsn

information on territorial coverage, affected

areas and levels of impact in hectares, resources
deployed to address the associated event (wildfire),
and historical evolution. Among its features, the
application provides access to an updated record
of issued alerts, includes search and filtering tools,
offers aggregated visualizations that facilitate
understanding of the distribution of alerts across
the national territory, and enables alert subscription
tools for particularly relevant notifications. This
allows users to receive notifications when the

early warning unit declares or modifies an alert,
according to a user-configured notification
preference setting.
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Example of different interfaces on the “Mobile application for events and alerts visualization for authorities”

‘ Panel de control para una
vision general de las regiones
con alertas vigentes

a nivel nacional

‘ Vision territorial de las alertas

‘ Vision territorial de las alertas
a nivel regional

‘ Listado de alertas vigentes en
tiempo real

Both tools underwent a six-month pilot phase.
During this phase, the tool was exclusively used by
SENAPRED's national early warning unit.

During the pilot phase, the national early warning
unit successfully used both tools and issued all
wildfire alerts without significant difficulties. This
led to a 40 per cent reduction in the time spent by
operators and coordinators on document drafting
and review tasks. Similarly, the tools demonstrated
their ability to operate continuously, translating
into high reliability for a service that must function
without interruptions. Visualization, the ease of
reading, the prioritization levels of information,
search options, timely alert updates and the ability
to consult technical information were well received
by institutions. These types of improvements,
focused on how information interacts within the
structures of EWS, allow for a more organized,
faster and more efficient decision-making process
to respond to an emergency. This type of progress
is particularly important in response to rapidly
destructive phenomena such as wildfires.

SENAPRED

5. Multi-hazard
maps: challenges and

ways to contribute to
EWS

Among the various instruments that can contribute
to comprehensive disaster risk management are
hazard maps, which aim to provide a geospatial
graphical perspective that allows for the
identification of areas exposed to the direct and
indirect effects of a hazard and the intensities
that may be recorded within a given time frame
(e.g. maximum ground acceleration for a 500-year
return period). These maps are usually focused
on a specific hazard, graphically representing
information based on the characteristics of

a particular socio-natural or anthropogenic
phenomenon (Mesias Rosas, 2017). They make

a significant contribution by providing relevant
information for identifying, understanding

and eventually reducing risk, preparing for an
emergency, and coordinating actions aimed at

()
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saving human lives and reducing material losses
(Renda et al., 2017). Their contribution varies
depending on their capacity to deliver precise
information and accurate estimates regarding
hazards and their impact on the territory and

to offer valuable insight for decision-making by
institutions responsible for disaster prevention and
response.

However, maps alone are not necessarily capable
of understanding multiple interacting hazards in
territories exposed to two or more phenomena. The
differences in addressing each hazard, which by
their nature require specific observation methods
and measurement parameters, complicate the task
of integrating and visualizing them within a single
map.

One of the major challenges for these tools is
integrating multiple hazards into a single map

by incorporating metrics, having standardized
databases and maintaining appropriate levels of
scale homogenization. Efforts in this area aim to
develop multi-hazard maps for use in research,
planning and comprehensive disaster risk
management decision-making, providing a more
thorough and precise overview of the dangers
faced by a community or region, thereby improving
risk understanding. These instruments have the
potential to facilitate planning and preparedness
by delivering valuable information to those
responsible for developing mitigation and response
strategies. Additionally, these maps can serve as

a useful educational resource to raise awareness
among the population about territorial hazards,
fostering a culture of preparedness (UNDRR and
WMO, 2022).

Among the challenges involved in developing multi-
hazard maps, the following stand out:

a. Standardization of information: Different
hazards are often documented and analysed
using diverse formats and methodologies,
originating from various sources. These
sources may not necessarily share the same
data processing methodologies or scales and

may exist in incompatible formats (e.g. vector
files, raster data), thus posing a challenge for
data integration.

Scale homogenization and use of perspectives:
Hazards can be mapped at different scales,
making homogenization crucial to ensure
consistency in multi-hazard maps. This
process is essential to ensure maps are
accurate and useful. Different hazards can
affect each area unevenly, and it is crucial
that maps coherently represent this variation.
To achieve this, several strategies can be
employed, such as: data standardization,

in order to adjust data to a common scale

to enable accurate comparisons between
different hazards; the integration of

multiple perspectives, which allows for the
incorporation of information from various
disciplines and sources to provide a more
thorough and precise overview; and the use of
advanced geospatial models, which enables
the application of modelling and simulation
techniques to harmonize data and represent
hazards consistently.

Need for specialized inputs and technologies:
Developing multi-hazard maps requires various
inputs and technologies, such as: topographic
instruments for territorial data collection,
satellite imagery for wide and detailed terrain
visualization, databases containing historical
and updated hazard information, and drones
for real-time aerial data collection. On the
technological side, it is necessary to use
software such as Geographic Information
Systems (GIS), simulation software and
predictive modelling.
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6. Potential
contributions

The benefits of multi-hazard maps relate to their
ability to significantly impact disaster risk reduction
and management by providing a comprehensive
perspective that goes beyond identifying individual
hazards. Their value lies in their ability to enhance
information parameters and schemes used in
planning and emergency management, which
enables broad detection of vulnerable areas and
supports resource prioritization. This approach
aligns with global initiatives such as Early Warnings
for All (EW4AII), which aims for EWS not only to
issue alerts about imminent events, but also to
provide useful information for designing effective
responses based on the specific conditions

of each community. Multi-hazard maps allow

for high-risk zones to be identified accurately.

This enables investment to be prioritized in
resilient infrastructure, community training to

be strengthened and more-efficient mitigation
measures to be developed. Additionally, they
contribute to the design and logistical development
of emergency response processes, as they help
develop mitigation strategies, can identify the

most appropriate and effective measures relevant
to each territory, and facilitate the planning of
evacuation routes, safe zones and shelters. These
elements help build a shared understanding of risk
beyond political and administrative boundaries,
and in turn, they can support the design and
implementation of evacuation drills and exercises.

Multi-hazard maps can also play an important role
in risk education and awareness. The availability
of clear and comprehensible maps can help
communities better understand the hazards

to which they are exposed and encourage the
adoption of preventive measures within community
spaces. The development of family and community
evacuation plans can be better supported by
accurate maps that provide valuable information
about the interaction of various hazards.

One of the key innovations in the development

of multi-hazard maps is the integration of data

and advanced predictive models. By using
technologies such as hazards modelling combined
with satellite data and GIS, it is possible not only
to visually represent each individual hazard but
also to simulate complex scenarios involving
multiple hazards that may occur simultaneously

or sequentially. This enables their effects to be
anticipated and the most vulnerable areas to

be more accurately assessed. Furthermore, the
incorporation of artificial intelligence and machine
learning algorithms into the processing of these
data can enhance predictive capabilities and
optimize decision-making processes by generating
models that continuously adjust as new and better
information becomes available. This approach

not only improves prediction accuracy, but also
facilitates response planning and resource
allocation during emergency situations. This
element is key, and it supports measuring in the
application of various tools such as indexes and
risk metrics that consider vulnerability as a central
factor (Pelling, 2013). Examples include the Social
Vulnerability Index (SoVI), the World Risk Index and
the Index for Risk Management initiative for Latin
America and the Caribbean (INFORM-LAC)."?

In addition to technological integration, another
critical challenge worth mentioning is community
participation in the generation and validation

of data. Incorporating local knowledge and risk
perceptions from affected communities into

12 The Social Vulnerability Index — SoVI, applied to disaster risk management, is available at: https://
datospararesiliencia.cl/dataset.xhtml?persistentld=doi:10.71578/HNIJX9. The World Risk Index 2024, published by
Biindnis Entwicklung Hilft, is available at: https://reliefweb.int/report/world/worldriskreport-2024-focus-multiple-
crises. The INFORM Risk Index for Latin America and the Caribbean, applied by UNICEF, is available at: https://www.
unicef.org/lac/informes/%C3%ADndice-de-gesti%C3%B3n-de-riesgo-para-am%C3%A9rica-latina-y-el-caribe.
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map development can make them significantly
more useful and applicable. Strategies such as
participatory workshops and the use of mobile
applications for data collection can strengthen
community response capacities and improve
the adaptability of disaster risk reduction and
management strategies.

Data interoperability is another crucial aspect to
consider. As the volume of available information
increases and technologies evolve, it is essential
to ensure that the various systems and databases
are compatible with each other. This involves
applying interoperability principles such as FAIR
(Findability, Accessibility, Interoperability, and
Reuse of digital assets),'® promoting open data and
making information available through standard,
well-documented interfaces (APIs). This ensures
the accessibility and usability of multi-hazard
maps for a wide range of users, from government
institutions to NGOs and the private sector, and
makes the maps themselves valuable inputs to be
integrated into tools such as EWS.

In summary, while hazard maps are powerful

tools for disaster risk management, their capacity
to integrate multiple hazards and diverse data
remains a critical area for development. The
combination of advanced technologies, community
participation and interoperable data standards is
essential for improving preparedness, response
and recovery efforts for both natural and human-
induced disasters worldwide, and for strengthening
the development of EWS capable of effectively
integrating multiple hazards.

13 For more information on interoperability principles, see: https://www.go-fair.org/fair-principles/
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1. Introduction

Any website or application that enables people

to connect online via social networking are
collectively termed “social media”. The rapid
expansion of Internet access, improvements in
telecommunications and the increasing use of
social media have transformed how we understand,
manage and reduce disaster risks. Information
now spreads faster than ever, allowing people to
stay informed, prepare in advance and respond
effectively to crises.

Communities today have access to real-time

data, expert recommendations and step-by-step
guidelines on how to protect themselves and

their surroundings. This level of connectivity has
fundamentally changed how we approach disaster
preparedness and response.

In this digital era, social networks have established
themselves as powerful tools in the disaster

risk management and reduction fields, playing a
fundamental role in information dissemination,
response coordination and impact mitigation. For
example, anyone with a social media account has
the possibility to share real-time information about
disasters, including geographic location, photos,
videos, messages or a combination thereof. Thus,
social media and social networks have become
critical to providing real-time access to information.
Emergency management and community
organizations, among others, have recognized

the potential of social media to provide timely
information and alert communities about impact
warnings, disaster prevention and response.

Journalists play a vital role in disaster risk
reduction (DRR) by ensuring that information

is accurate, timely and actionable. Their
responsibilities extend beyond merely reporting
events — they are key actors in fostering resilience,
countering misinformation and holding authorities
accountable. However, as technology continues

to reshape media landscapes, journalists must

adapt to new tools and methodologies. By
integrating data journalism, satellite imagery,
Al-driven analytics and social media verification
techniques, they can enhance their ability to report
on disasters with precision and depth. At the same
time, ethical considerations must remain at the
forefront of their work, ensuring that the pursuit of
real-time coverage does not compromise accuracy,
transparency or inclusivity.

Disaster communication is not just about delivering
information; it must empower communities

to prepare, respond and recover. To achieve

this, journalism must embrace a risk-informed
approach, recognizing that disasters, far from
being isolated events, are interconnected with
broader social, political and environmental factors.
Ultimately, the future of disaster reporting lies in
leveraging technology responsibly, strengthening
community trust and prioritizing the needs of the
people most affected.

Social media has transformed the way in which
information is disseminated in emergency
situations. Unlike traditional media, which can
face delays in the transmission of news, platforms
such as X (formerly Twitter) and Facebook

allow for the instantaneous dissemination of
critical alerts and updates. Since “social media
provides opportunities for engaging citizens in the
emergency management by both disseminating
information to the public and accessing
information from them” (Simon, Goldberg and
Adini, 2015), this immediate communication
capability is crucial for real-time decision-making,
which can be decisive in minimizing damage and
preserving lives. Organizations and institutions in
charge of disaster management can rely on social
networks and tools such as geolocation to improve
their responses and have a direct impact on the
people most affected.

In recent years, social networks have proved to be
a means of rapidly organizing and coordinating
humanitarian relief efforts. During disasters such
as earthquakes or hurricanes, the ability to quickly
gather human and material resources is vital for

(=)
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effective response and resource management.
Platforms such as WhatsApp and Facebook

have been used effectively to coordinate rescue
logistics and the distribution of supplies, as well as
being a channel where specific community needs
can be quickly addressed. One such example is

the efforts coordinated through social networks
after the 2010 earthquake in Haiti, when these
networks facilitated the mobilization of volunteers
and the collection of donations. This efficient
organizational capacity allows for an effective
response, although it also faces challenges such as
the management of large volumes of information
and the need to verify the authenticity of sources.
This outreach to the community also works to raise
awareness and there is no limit on the number of
people who can participate in these channels.

Social networks serve as crucial platforms for
disaster prevention education and awareness-
raising, and in recent years have been used

to provide accessible information. Through
educational campaigns, essential knowledge

on how to prepare for and mitigate the effects

of disasters can be disseminated. Preventive
education is a key component in building resilient
communities. The #HurricaneStrong initiative, for
example, has been used on X (formerly Twitter) to
educate the public about hurricane preparedness,
demonstrating the power of social networks in
disseminating preventive knowledge. However,
the effectiveness of these campaigns depends
largely on the reach and receptiveness of the target
audience, as well as the ability to sustain attention
over the long term.

In this chapter, we discuss how social media is
not just a tool for staying connected and how it
has, in fact, become an essential part of disaster
risk management. More than ever, governments,
emergency response agencies, community
organizations and individuals are using social
media to provide and obtain real-time alerts, guide
evacuations and share life-saving information.

1.1 Roles and responsibilities of the
media and journalists regarding the
use of technology in times of disaster

A discussion of the media’s role in covering
disasters and emergency situations is very much
needed. Since the media plays a large role in
informing, educating, monitoring and giving voice
to affected communities, its contribution to the
security, protection and resilience of society in
times of crisis has become evident in recent years.
However, there is still room for improvement, as
discussed below:

e Reporting with accuracy and truthfulness: To
maintain public trust, journalists must verify
their sources and cross-check information
before publishing it. The media must only
provide accurate and verified information about
the disaster, which is essential to preventing
the spread of rumours and confusion at critical
moments.

e Encouraging fact-checking and responsible
sharing on social media: In times of crisis,
anyone with Internet access can contribute
to the information ecosystem. While
this democratization of information can
be valuable, it also increases the risk of
misinformation. Users should verify sources
before sharing disaster-related content,
prioritize official channels and avoid amplifying
unverified claims that may cause panic or
confusion. Media outlets and journalists
can help by promoting digital literacy and
fact-checking tools to support responsible
information-sharing.

e Alerting and educating the population: If time
allows, the media should alert the population
to the potential impacts of an upcoming
disaster; this includes reporting on warnings,
evacuations and safety measures. In addition,
the media should educate the public on how
to prepare for future disasters and provide
practical advice on (or dissemination of)
actionable guidelines that can help save

(=)
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lives. All information should be based on
official sources (such as country or regional
authorities) and guidance around DRR. Al-
powered tools can enhance early warning
systems by analysing meteorological data,
social media trends and historical disaster
patterns to predict potential impacts more
accurately.

Reporting on the disaster response: The
media must be vigilant when reporting on
the response to a disaster. This includes
monitoring the effectiveness of rescue
operations, aid distribution and inter-agency
coordination.

Promoting resilience and preparedness: The
media can contribute to societal resilience

by reporting on risk reduction and disaster
preparedness practices. Similarly, publishing
inspiring stories of resilient recovery and
rebuilding can also motivate communities to
remain hopeful and work together towards
achieving a common goal. By fostering this
discussion, the media can play a crucial

role in communicating relevant information
throughout the disaster management cycle. Its
work involves not only reporting the facts, but
also contributing to DRR, building resilience
and improving the response of affected
communities.

Content differentiation: In disaster situations,
media coverage tends to be similar between
different outlets, as they all report on the
same core events using common sources
(including posts by the general public).
However, journalists may try to stand out

by presenting different ideas and original
approaches regarding disaster risk, its metrics
(e.g. return periods) and components (e.g.
hazard, vulnerability and exposure). To avoid
generating confusion among the affected
communities, a DRR approach should be
adopted when providing a wide range of ideas.
Similarly, by consciously setting the agenda
rather than passively following it, journalists

I Communication and social networking tools

can offer their audiences a unique and relevant
perspective. Natural language processing
(NLP) can help identify emerging narratives
and trends in disaster reporting, enabling
journalists to refine their coverage and avoid
repetitive content.

Tailoring messages to the target audience:

The needs of audiences vary according to
their profile and the arrival of the media for
which the journalist works. During a disaster,
the general public (including the affected
communities) require verified and accurate
information about the event, its impact, and
rescue and relief efforts; they also need data
based on scientific facts to counter panic.
National audiences do not need the same level
of detail as local audiences, but international
organizations, although geographically distant,
also require specific information about the
actions of other actors and the exact needs.

Using social media responsibly: The proper use
of social media is linked to ethical challenges
and responsibilities. For this reason, journalists
should carefully verify information before its
dissemination on different channels, under the
premise that “speed should not compromise
accuracy”. Similarly, the inclusion of multiple
perspectives and voices on social media is
critical for equitable and accountable coverage.

Embedding a disaster risk perspective in
everyday journalism: Disaster reporting is
not just about covering emergencies as
they happen; it is about helping audiences
understand risk as an ongoing reality.
Journalists play a key role in shaping public
awareness, and their coverage should not
be limited to crisis moments but rather
address the factors that influence disaster
risk before, during and after an event.
Raising risk awareness through journalism
means recognizing that disasters are not
isolated events but the result of intersecting
vulnerabilities, exposure conditions and
characteristics of one or multiple hazards.
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Media outlets have the power to shift the
public mindset from reaction to prevention,
influencing both policy and behaviour in ways
that can save lives and reduce losses.

e Building audience trust: Trust is the foundation
of effective disaster communication. In
moments of crisis, people turn to the media
in search of accurate, timely and actionable
information. However, trust is not built
overnight since it is only cultivated through
consistent, responsible and transparent
reporting in everyday coverage.

In summary, the strategies for communicating risk
must adapt to the rapid and varying conditions in
which disasters evolve. In an era dominated by
digital platforms, the responsible use of technology
— such as Al-driven data analysis, satellite
monitoring, real-time mapping and automated fact-
checking — can enhance the accuracy and reach

of disaster reporting. Whether through traditional
journalism or social media, leveraging these tools
ensures that clear, verified and timely information
reaches those who need it most. By integrating
digital innovations into reporting while prioritizing
public awareness and trust, we can strengthen
disaster preparedness and build more-resilient
communities.

1.1.71 Mental health and disasters in social
media

Although social media can be an invaluable tool

to keep us connected, informed and supported
before, during and after a disaster, it can also
become a minefield for our mental health if not
properly managed. Hall et al. (2019) studied the
association between exposure to disasters and the
use of media and post-traumatic stress disorder
when social media posts show images or videos of
damage to homes, the environment or people who
were injured or killed. However, the study found
that social media posts that show people in heroic
or collaborative situations have little post-traumatic

impact and even encourage people to search for
more related content and information.

It is important to understand how to care for our
emotional well-being as we navigate these digital
spaces during crisis situations. Some strategies
that are useful in protecting mental health during
disasters regarding social media content are
outlined below:

1. Set clear boundaries: It is easy to fall into a
cycle of excessive consumption of news and
social media content during crisis situations.
Setting time and frequency limits to avoid
overexposure to stressful information, such
as by scheduling specific times of the day to
check the news and social media, allows the
mind to take a break at other times.

2. Double-check the information sources: In
times of crisis, fake news and misinformation
can spread quickly on social media, with the
possibility of increasing anxiety and fear. It
is therefore recommended to always verify
the source and veracity of information before
further sharing it or making decisions based on
it. Only official and specialized news sources
should be relied upon.

3. Foster a supportive community: Using social
media to connect with friends, family and
supportive communities who can provide
comfort, guidance and solidarity during difficult
times helps people engage in constructive,
positive conversations that promote mutual
care and resilience.

4. Practise self-reflection and self-care: Be
aware of how you feel while scrolling through
social media during a crisis. If you notice
that certain types of content are negatively
affecting you, don't hesitate to step away and
prioritize your emotional well-being. Spend
time doing activities that help you relax, such
as meditation, exercise or reading.

(=)
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5. Betolerant of yourself and others: In times
of crisis, it is important to remember that we
are all dealing with difficult situations in the
best way we can. Try to be empathetic and
compassionate towards yourself and others
in online interactions, for instance by avoiding
judging or criticizing others, as a simple act of
kindness can make a difference to someone’s
emotional well-being.

6. Be mindful of algorithmic triggers: Social
media platforms use algorithms to prioritize
content based on engagement, which means
that the more disaster-related content you
consume, the more of it you will see. This can
create an overwhelming and distressing cycle.
To counteract this, it is recommended that you
actively engage with positive, educational or
uplifting content to balance your social media
feed. Additionally, consider muting certain
keywords, unfollowing accounts that contribute
to your distress, or using features like “See less
of this” to limit exposure to triggered content.

1.1.2 Ethics of social media use during
disasters

As a tool for sharing information and
communication, social media has a wide

range of benefits related to DRR. However, its

use comes with ethical challenges in disaster
contexts, particularly concerning access, equity,
misinformation, privacy and psychological impact.

the ethical tension lies in prioritizing messages
that originate from an authoritative source (e.g.
a local emergency authority) and combating
rumours and misinformation while at the same
time recognizing that organic community
communications and sometimes non-expert
influencer voices may contribute (positively
and negatively) to DRR. Similarly, the upward
flow of information or intelligence-gathering
may be informed by social media. For instance,
how do emergency authorities prioritize voices
in the collection of this information and how do
existing relationships/perceptions as well as
access gaps influence this?

Algorithmic bias: Machine learning algorithms
and opaque recommendation systems
influence which disaster-related information
is prioritized online. This raises several ethical
concerns such as the following:

o Misinformation and viral rumours may be
amplified over verified, expert-led content.

o Crisis response posts may reach certain
demographics more than others, leading
to disparities in levels of awareness and
preparedness.

o Algorithms may reinforce bias by
prioritizing content from dominant
languages or regions, thereby excluding
marginalized voices.

Emotional manipulation and sensationalism:

e Relationships and authoritative voices: Social Social media algorithms tend to prioritize
media is by its very nature about relationships, content that generates high engagement, often
with trust levels impacted by a range of amplifying emotionally charged and fear-driven
factors, such as familiarity and identification narratives. While urgency is necessary in disaster
with an account/individual/organization and communication, excessive sensationalism can lead
the perceived level of expertise. The rise of to panic, misinformation or crisis fatigue among
influencer culture and the negative impacts this the public. Journalists, emergency responders
has on perceived expertise or authority is also and media outlets must ensure that risk is
important to note. The relationship on social communicated responsibly, maintaining a proper
media between the population and emergency balance between urgency and accuracy. Disaster-
agencies must be understood as multi- related messages should be clear, direct and
directional. From the population’s perspective, without exaggerations. Encouraging preparedness
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rather than panic is essential, as shifting the focus
towards proactive measures fosters a sense of
empowerment rather than helplessness.

1.2 Challenges in the Americas and
the Caribbean

Communication plays a strategic role in
coordinating effective responses to mitigate
disaster impact. It offers the means to inform
users about events that have the potential to
negatively impact us all, and the practices that we
can implement in response. In this sense, the use
of technological tools has significantly improved
DRR efforts in the region.

Nevertheless, there are several challenges in the
Americas and the Caribbean region, as set out
below:

e Misinformation, rumour spreading and
inaccessible information: During emergencies,
individuals are exposed to large quantities of
information, often without being aware of its
validity or the risk of misinformation. In the
aftermath of the Haiti earthquake in 2010 and
Hurricane Maria in 2017, misinformation and
rumours complicated rescue and humanitarian
response efforts. An often-overlooked
challenge in Latin America and the Caribbean
is its linguistic diversity, as it is home to
many linguistic groups, including Indigenous
communities and migrant populations, many of
whom may not receive emergency messages in
a language they fully understand. Additionally,
people with disabilities, such as those who
are visually or hearing impaired, may struggle
to access life-saving information if it is not
provided in alternative formats, including sign
language interpretation, Braille or audio alerts.

e Unequal access to technology: This issue
is especially evident in marginalized
communities, where it limits their capacity
to receive, act upon and share critical
information during and after disasters. This

also exacerbates post-disaster inequalities,
as communities are uncertain about what
is happening around them or are unable to
access aid and shelter information. This

is why it is important to use traditional
telecommunications methods in addition to
social networks.

e Lack of political action: There is a lack of
leadership and effective commitment among
some governments to implement policies
and resources to strengthen emergency
communication, despite the fact that disaster
resilience is a shared responsibility and
everyone's business (Dufty, 2012).

e Insufficient integration of risk management and
disaster communication education in school
curricula and educational programmes: Until
this topic is embedded in the curricula, actions
and preparedness plans among the general
public will be heavily constrained, which will
undermine disaster risk management efforts.

e Lack of community-based solutions: Grass-
roots organizations, community leaders and
local emergency networks play a fundamental
role in disaster preparedness and response.
Empowering communities with decision-
making capabilities and providing them with
the necessary resources to manage localized
risks ensures that disaster communication
efforts are not only effective but also culturally
relevant and widely accepted.

In light of the above, the following actions are
proposed, with the aim of addressing the identified
challenges:

e Strengthening media and digital literacy:
Implement educational programmes that
improve people’s ability to discern between
truthful information and disinformation on
digital platforms by developing their critical
skills in the evaluation of sources. Also,
implement training and information campaigns
at all levels, so that the informed population
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can manage disasters and be active actors
when necessary.

e Developing clear and accessible communication
protocols: Establishing clear guidelines that use
clear language is critical at all levels to ensure
that emergency information effectively reaches
all affected communities.

e fostering public—private collaboration:
Facilitating strategic partnerships between
governments, non-governmental organizations
(NGOs) and private technology companies to
improve coordination and disaster response
helps foster community-based solutions.
Involving all stakeholders facilitates the
dissemination of verified information and crisis
management.

e Ongoing training and crisis drills: Conducting
periodic exercises that prepare citizens in how
to respond effectively to emergency situations
- including practising using emerging
technologies and data management during
real and simulated crises — will promote a
culture of prevention, which is necessary for
the population to feel safe in the face of certain
events.

e Promoting transparency and accountability:
Implementing policies that promote
transparency in crisis communications and
accountability of the actors involved in disaster
management will build public confidence
and make responses more effective. These
policies will help us ensure that our channels
are trustworthy, and we will reinforce the
institutional framework necessary for risk
management.

Effective disaster risk management in Latin
America and the Caribbean cannot be achieved
in isolation; it requires a collective effort that
bridges political action, social engagement and
cultural understanding. To create truly inclusive
and effective DRR strategies, governments,
organizations and communities must work

together to develop integrated, context-sensitive
solutions that respect local identities, traditions
and social structures. Strengthening disaster
communication and risk management is not only a
technical necessity but also a social responsibility
that depends on collaboration, transparency and
proactive engagement. Only by fostering stronger
coordination between institutions and civil society
can we move beyond aspiration and towards a
more resilient, better-prepared future for the region.

1.3 Role of journalists and technology
in disaster information

It is crucial that we discuss the role of the media
in the coverage of disasters and emergency
situations since their function goes beyond simply
informing; they also have ethical and social
responsibilities. Their “watchdog role” involves
informing, educating, monitoring and giving voice
to affected communities (UNDRR, 2021). In doing
so, they contribute to the safety and resilience of
society in times of crisis. The following are some
key roles they should play (Zitzmann, 2020; Acosta
Aguilar, 2022):

e Accurate and truthful reporting: As accuracy is
critical to maintaining public trust, journalists
must verify their sources and cross-check
information before publishing it to ensure
accurate and verified information about the
disaster is provided. Accuracy is essential to
avoid the spread of rumours and confusion at
critical times.

e Alert and educate the population: The media
has a responsibility to alert the population of
an impending disaster; this includes reporting
on warnings, evacuations and safety measures.
In addition, journalists should educate the
public on how to prepare for future disasters
and provide practical advice and guidelines
for life-saving action based on official sources
from the country’s or region’s DRR systems.
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Monitor and evaluate the authorities’ response:
The media and its journalists should be
“vigilant” in the sense of monitoring how
authorities respond to a disaster. This includes
assessing the effectiveness of rescue
operations, relief distribution and inter-agency
coordination. For this purpose, they should be
familiar with official disaster response plans.

Promoting resilience and preparedness:
Journalists play a crucial role in
communicating relevant information during
disasters associated with the physical natural
and physical built environment. Their work
involves not only reporting the facts, but also
contributing to DRR and building resilience
and improving the response of affected
communities. The media can contribute

to societal resilience by reporting on risk

reduction and disaster preparedness practices.

Similarly, publishing inspiring stories of
recovery and rebuilding can also motivate
communities to maintain hope and work
together. (Dominguez-Panama, 2017; Mayo-
Cubero, 2021; Lozano Ascencio, Franz Amaral
and Puertas Cristdbal, 2020)

Data journalism and Al-driven data: With the
growing availability of big data and Al tools,
journalists have access to real-time analytics,
predictive modelling and trend analysis,

which can enhance disaster coverage. This
also comes with ethical concerns about data
interpretation, bias and potential misuse of
Al-generated information. Journalists must

be trained to critically analyse Al-driven
reports and ensure they contextualize, rather
than blindly rely on, data. Integrating data
visualization tools, geographic information
systems (GIS) mapping and Al-based trend
analysis can strengthen journalistic narratives,
making them more informative, accessible and
actionable for different audiences.

2. Implementation
and technological
opportunities

in disaster risk
management offered
b% communication
channels

This section focuses on improving preparedness
and response to catastrophic events by integrating
advanced technologies and innovative strategies
into communication channels. The integration

of advanced technologies establishes a robust
framework for addressing crises more effectively,
thereby ensuring effective protection of human

life and resources at risk, while making affected
communities more resilient.

Real-time monitoring and analysis of relevant data
(such as water levels and weather conditions)
using technologies such as the Internet of

Things (IoT), earth observations and GIS provide
critical information for assessing risks, planning
coordinated emergency responses and developing
multi-hazard early warning systems.

This information, if efficiently shared through
digital platforms and mobile applications, has
the potential to improve communication and
coordination between local authorities, response
teams and the population at risk. Educational
technologies, such as virtual reality simulations
and online continuing education, can also play a
central role in community disaster preparedness,
since these tools not only promote public
awareness of safety measures such as first

aid and evacuation procedures, but are also
fundamental in educating and raising awareness
of risk among new generations. It is essential
that from an early age, children are aware of how
to act in emergencies so that they can become
effective communicators of information in their
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communities, facilitating a rapid and coordinated
response from both the population and the
authorities. In addition, preparing children in this
way contributes significantly to the capacity of
communities to adapt and recover by fostering

a culture of safety and prevention that mitigates
the adverse impacts of disasters on vulnerable
populations.

2.1 The role of social media tools in
promoting disaster resilience

Nowadays, the use of technologies is no longer
seen as just an option in human interaction, but
rather as a necessary tool for the evolution and
development of current and future generations. In
recent years, we have witnessed constantly shifting
social components and habits, as we have moved
from conversations in public parks to chatting

with stickers in messaging applications, and from
education in a classroom to on device screens, all
of which evidences the presence and relentless
march of technological growth and the need to use
technology for disaster management.

People tend to seek information on social
networks for themselves as “people are natural
information seekers, relying primarily on their own
social networks. Following a disaster the public
initially seeks the most common and familiar
channels: phone calls, emails or text messages.
If unsuccessful, they turn to alternatives and/or
official resources of information” (Stiegler, Tilley
and Parveen, 2011). This curiosity translates into
the need to know and stay informed, but also into
the need for certainty when disasters occur.

The ability of social networks to provide emotional
and psychological support in times of crisis should
not be underestimated, as social media can help
build community resilience, minimize residual risk
(such as through coordination tasks, discussions
and post-event improvement) and create safer
communities through shared responsibilities
(Dufty, 2012). This results in the creation of “social
capital” for disasters which helps the community

to have free access channels where they can feel
supported, create donation campaigns and keep
the Internet informed about what is happening in
real time.

Social media plays a multifaceted role in promoting
disaster resilience, facilitating everything from
rapid information dissemination to emotional
support and aid coordination. Although it presents
challenges such as the spread of false information
and the management of large volumes of data, its
overall positive impact on disaster preparedness
and response is undeniable and suits the needs

of an ultra-connected population. Strategically
integrating these tools into disaster management
policies can significantly strengthen the ability

of communities to cope with, and recover from,
adverse events, and can provide a viable option
when traditional communication channels are

lost. Reinforcing the use of social media and
institutionalizing certain channels has become a
necessity to nurture our means of response.

2.2 Youth as disseminators

Crises often bring uncertainty and despair,
particularly for young people who are preparing for
adult life yet face diminished opportunities and an
unpredictable future. The COVID-19 pandemic and
post-pandemic context, which varied from country
to country, created an uncertain environment for
young people trying to start work and develop their
life projects. However, crises are also times of
change and an opportunity for innovation, requiring
new ways of doing and thinking in order to adapt
to new realities. A sociological perspective that
advocates for a sociocultural approach recognizes
that young people are not just an age group,

but a key social and political actor, a group that

is always present in the processes of societal
transformation and that, regarding aspects such
as risk management, can contribute to a variety of
activities due to their culturally inherent attributes
such as: critical thinking, the superior ability to
learn and perform in new technologies, and their
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commitment and energy when they recognize a
purpose worthy of struggle.

Therefore, young people’s participation in DRR
can be relevant in terms of contributing their
capabilities and skills in information management
and the use of new technologies. There is
enormous potential in involving youth, alongside
the expertise of organizations and educational
centres, in addressing DRR. There should be an
understanding that communities are dynamic:
people may join for common goals and separate
again once these have been achieved (Twigg,
2009; McAslan, 2011). Youth engagement is vital,
particularly in regions such as Latin America

and the Caribbean that are increasingly exposed
to environmental hazards. Through education,
technology, advocacy and innovative marketing
strategies, young people can become powerful
disseminators of hazard information, fostering
resilience before, during and after disasters.
Additionally, they can create supportive networks
to generate community resilience and support,
thereby impacting directly on mental health and
trauma too.

This collaborative approach ensures that local
knowledge, customs and practices are respected.
It also empowers communities to take ownership
of their resilience-building efforts, fostering

a sense of collective responsibility and self-
reliance. Furthermore, recognizing the knowledge
and expertise of civil society organizations
(especially those with youth-led initiatives) will
help in the design, implementation and monitoring
of programmes to leverage resources more
effectively.

Youth networks and organizations can serve as
hubs for collaboration and action where knowledge
exchange and innovation thrive. Harnessing
technology and social media, youth can mobilize
their peers on a large scale, amplifying the impact
of DRR efforts. This proactive engagement fosters
a sense of community ownership and resilience, as
young people take charge of their future.

However, successful engagement hinges on
trust, which is understood as the confidence
that individuals have in the reliability, integrity,
governance and fairness of institutions.
Establishing trust between youth and authorities
is crucial for effective communication and
collaboration. Transparency, accountability

and inclusivity are essential to building and
maintaining trust, ensuring that youth feel valued
and empowered in these efforts, and fostering
economic development, societal stability and
the effective functioning of democracy. Likewise,
the participation of young people is linked to
society’s capacity to involve them in constructing
a life project that will overcome the sense of
hopelessness arising from the crisis. Allowing
young people to become involved in efforts to
learn about disaster risk and the measures needed
to reduce it also allows them to enter a space of
opportunities and alternatives to an otherwise
uncertain and distressing situation; it empowers
them to take responsibility for the present and a
future that is also theirs.

Intergenerational collaboration is essential in
bridging knowledge gaps between youth and older
generations in disaster preparedness. Proactive
strategies, such as participatory decision-making
and youth-led initiatives, empower young people to
drive change within their communities. By actively
involving youth in the planning, implementation
and evaluation of DRR programmes, stakeholders
ensure that DRR efforts are sustainable, relevant
and deeply embedded in community resilience
strategies.

()
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3. Innovative
ideas and
recommendations

Some ways of optimizing social media impact on
the DRR cycle are explored below:

e We recommend developing social media use
in DRR guidelines to ensure best practice
by disaster stakeholder organizations.
This acknowledges that social media
communications in a disaster are often not
driven by people with explicit social media
or communications training, and that by its
very nature a disaster may subvert usual best
practice in social media communication.
Social media platforms should develop
disaster-specific content moderation policies
to detect and reduce misinformation, scams
and fear-driven narratives during crises. This
could involve Al-powered fact-checking tools,
collaboration with emergency authorities and
real-time content monitoring to prevent the
spread of harmful information.

e We recommend proactively and pre-emptively
nurturing a positive relationship with the
community, including local social media
influencers and with an emphasis on target
groups (e.g. youth), to help create trust
between the community and the emergency
authorities. Those tasked with intelligence-
gathering during a disaster should use an
equity lens when gathering information via
social media pathways and ask whether the
voices/experiences of the most vulnerable
people are being represented by the social
media noise.

e Journalists play a crucial role in ensuring
accurate, verified and responsible disaster
reporting across digital platforms. Training
programmes should be developed to equip
journalists with fact-checking skills, digital

verification tools and ethical guidelines for
reporting in crisis situations. Additionally,
media outlets should collaborate with
emergency response agencies to disseminate
life-saving information, counter misinformation
and provide clear, science-based coverage of
disaster risks. Empowering journalists with
real-time access to authoritative sources,
satellite data and Al-driven risk analysis

can enhance their ability to report disasters
accurately and help communities make
informed decisions.

Efforts to optimize social media as a tool for
DRR will ideally include a gap analysis related
to both device penetration and Wi-Fi coverage,
as well as additional nuances impacting on
equity at the local level.

To ensure inclusive communication, emergency
messaging should be available in multiple
languages and adapted for accessibility,
including audio descriptions, sign language
interpretation and easy-read formats. This
would help reach marginalized communities,
including non-native speakers, individuals

with disabilities and people with limited digital
literacy.

The authorizing environment for disaster
messaging by emergency authorities would
ideally support a flexible and adaptable use
of social media during disasters to address
access and equity risks.

Social media platforms may consider engaging
with emergency authorities to create a
validation process and categorization that
social media users can easily recognize as a
means of flagging authoritative or endorsed
voices in a disaster.

Open-source and open-data practices are
encouraged as a way to improve transparency.
Ideally, international standards should be
developed to differentiate between credible
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and non-credible disaster-related social media
reports in terms of both Al and misinformation.

Incorporating social media communication
into the post-disaster response debrief
and evaluation processes will foster an
environment of quality improvement.
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Conclusions

This special report, developed through a
collaboration between UNDRR, ARISE USA, NASA
and the Regional Scientific and Technical Advisory
Group (RSTAG) and a wide range of experts, has
examined the past, present and future applications
of technology in advancing disaster risk reduction
(DRR) efforts. By providing detailed explanations,
definitions and regional case studies, this report
showcases how various technologies have

helped bridge critical gaps in data gathering, data
processing and disaster risk modelling related to
multiple hazards and at different scales in recent
years.

Many technological advancements have
significantly improved our overall understanding
of disaster risk — an essential foundation for
designing, planning and implementing effective
DRR strategies. Robust and accurate risk
assessments enable policymakers to prioritize
investments in resilient infrastructure, develop
training exercises such as emergency drills and
design risk-informed recovery plans aimed at
building back better.

However, despite substantial progress in

areas such as Earth observation, early warning
systems (EWS) and hazard analysis, it is

clear that technology alone cannot resolve all

DRR challenges. While artificial intelligence

(Al) and machine learning (ML) have driven

rapid advancements in these domains, their
transformative potential depends on the successful
integration of technology with socioeconomic,
cultural and infrastructural considerations.

The Americas and the Caribbean region presents

a complex and diverse landscape of hazards,
exposure and vulnerabilities. As such, technologies
must be tailored to local contexts and guided

by inclusivity principles. This includes adopting
demand-driven approaches, promoting community-
led data collection, integrating Indigenous and

traditional knowledge, and ensuring multilingual
and culturally appropriate communication
strategies to reach all segments of the population
effectively.

Al-based technologies, when deployed in
developing countries, often suffer from data
bias. These tools are typically trained using

data from high-income, data-rich countries with
vastly different contextual realities, ranging from
building types to socioeconomic conditions. The
effectiveness of these tools is therefore heavily
influenced by the context in which the training
data were gathered. Understanding this is just as
important as understanding the technology itself.

While Al is often viewed as a universal solution
for a variety of challenges in almost all fields, it
is important to recognize its limitations. Al relies
on historical data, meaning it may struggle to
anticipate emerging trends crucial to DRR such
as those driven by climate change and changing
exposure characteristics. Human intelligence
remains indispensable, especially when navigating
future uncertainties and making high-stakes
decisions in urgent, complex and uncertain
situations.

Though new technologies can accelerate data
processing, this does not necessarily make them
better tools for risk assessments. Capacity-building
remains essential to empower practitioners

with the ability to interpret results, understand
technological limitations and make sound
decisions under these conditions.

This report also emphasizes the importance of
fostering demand-driven development for new
technologies. Bridging the technological gap in
developing countries requires affordable, operable
solutions and a systems-thinking approach.

This means acknowledging the interconnected,
dynamic and multifactorial nature of disaster risk.
Technologies must therefore be embedded within
a broader understanding of that systemic nature of
disaster risk.



Technology use in DRR should go beyond
producing data and risk metrics. It must be
complemented by well-trained professionals
capable of interpreting and validating model
outputs. This brings with it a critical need for
accountability — from developers who must ensure
transparency (avoiding black-box models), to users
responsible for making informed decisions during
crises.

Al should not be seen merely as an innovation tool.
First, it cannot replicate the creativity and foresight
of human thinking (i.e. the spark of innovation).
Second, successful innovation requires adoption,
which in turn hinges on appropriate technological,
socioeconomic and infrastructural conditions, from
design to deployment.

A practical example of technology use explored

in this report is the role of social media in DRR.

Far beyond being a mere communication tool,
social media now serves as a real-time, interactive
platform for raising public awareness and

ensuring public safety. Journalists play a crucial
role as intermediaries, and equipping them with
Al-powered verification tools can enhance the
accuracy and reliability of crisis information. Al
also offers potential in moderating disaster-specific
content and combating misinformation by enabling
quick identification and validation of credible
sources during emergencies. This facilitates the
smooth deployment of preparedness and response
activities when available.

Importantly, the report highlights the enduring
value of “low-tech” solutions, especially in the
context of EWS. These approaches, though not
cutting-edge in data processing or analytics, have
demonstrated life-saving impacts when adapted to
local, often rural, contexts. Incorporating traditional
and Indigenous knowledge has not only improved
system effectiveness but also fostered community
trust and engagement.

Interoperability of data remains a key enabler for
DRR technologies. Effective adoption of tools
depends on the ability to access and integrate
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diverse data sets. Encouragingly, efforts to
standardize data formats and create open,
online repositories have improved the predictive
capabilities of risk models.

The use of technology in DRR is still unfolding.
Ongoing debates on issues such as model
development, intellectual property and
accountability must address all the emerging
challenges mentioned in this report. For instance,
assumptions about the perpetual availability

of free training data are becoming increasingly
questionable, as access becomes restricted and
licensed models — which are often developed with
public resources but exploited by private entities

or individuals — are becoming the norm. This
report seeks to initiate these critical discussions,
bringing together voices from academia, policy and
practice to explore both achievements and ongoing
challenges.

On the complex path ahead, the Sendai Framework
for Disaster Risk Reduction 2015-2030 can help
shape and create more of the global common
goods that are mandatory to accelerate the
targets set for its four priorities. The Midterm
Review of the Sendai Framework includes several
recommendations related to the role of technology
in DRR and has recognized technology as a critical
enabler of disaster resilience, but only if it is
inclusive, people-centred and equitably distributed.
Ultimately, the effective use of technology for DRR
has the potential to foster and create more-efficient
DRR ecosystems. These ecosystems can serve

a new generation of disaster risk management
experts, safeguarding hard-earned development
goals and guiding our societies towards resilient
development.

(=)
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